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ABSTRACT. Given a non-CM elliptic curve E over Q, let Np be the number of points on E (mod p).
Given t ∈ N, we are concerned with the density of primes for which Np/t is a prime. The constant
appearing in this density was first postulated by Koblitz for t = 1 and the conjecture was later
refined by Zywina. Assuming certain conjectures, this paper gives the first explicit computation of
this constant in the literature, and confirms existing heuristic predictions for the same.

More precisely, we postulate sufficient cancellation in the sum of the Möbius function running
over the sequence Np/t, and show that this is equivalent to the refined Koblitz conjecture, under the
assumption of suitable elliptic analogues of the classical Elliott-Halberstam conjecture.

1. NOTATION

Throughout this article, p will be used to denote a rational prime. We will use the standard
notation for the logarithmic integral

Li(x) :=

x∫
2

dt

log t
.

The von Mangoldt function Λ(n), is defined by

Λ(n) =

{
log p, ifn = pr, r ≥ 0

0, otherwise.

We let rad(n) denote the product of distinct prime factors of n. For a non-negative function g(x),
the notation f(x) = O(g(x)), or equivalently, f(x) � g(x) means that there is a constant C such
that |f(x)| ≤ Cg(x) as x → ∞. The notation f(x) = o(g(x)) is used to denote that f(x)

g(x) → 0 as

x→∞. The notation f(x) ∼ g(x) means that f(x)g(x) → 1 as x→∞. We will use τk(n) to denote the
number of ways of writing n as a product of k positive integers. The number of divisors of n will
be denoted by τ(n).

2. INTRODUCTION

Let E be an elliptic curve without complex multiplication, defined over Q with conductor NE .
Let Fp be the finite field of order p. Suppose E has good reduction at p, that is p - NE . Let Ep be
the elliptic curve E reduced modulo p and Ep(Fp) be the set of Fp-rational points on the curve Ep
defined over Fp. This is a finite group of cardinality

#Ep(Fp) = p+ 1− ap,

where ap is an integer satisfying the Hasse bound

|ap| ≤ 2
√
p.

Henceforth, we denote the cardinality #Ep(Fp) by Np.
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In 1988, motivated by applications in cryptography, Koblitz [12] studied the distribution of Np

for certain elliptic curves over the rationals. By drawing analogies with the celebrated twin-prime
conjecture in classical number theory, he proposed the following conjecture for non-CM elliptic
curves.

Conjecture 1. [Koblitz [12] 1988] Let E/Q be a non-CM elliptic curve with conductor NE . Assume that
E is not Q-isogenous to a curve with non-trivial Q torsion. Then there exists a positive constant C(E)
such that

#{p ≤ x : p - NE , Np is prime} ∼ C(E)
x

(log x)2
,

as x→∞.

Moreover, Koblitz conjectured a value for the constantC(E). The constant he suggested is given
by

C(E) =
∏
`

a(`),

where the product runs over primes `,

a` =

1− #{g ∈ G` : g has eigenvalue 1 }
|G`|

1− 1

`

, (2.1)

andG` denotes the Galois group of the `-division points ofE over Q, identified upto isomorphism
with a subgroup of GL2(Z/`Z). It is instructive to interpret the numerator of (2.1) as the probability
that Np is not divisible by the given prime `, and the denominator as the probability of a random
integer not being divisible by `. Let us also remark that for a Serre curve, where G` is always
isomorphic to GL2(Z/`Z), the above constant can be written explicitly as

C(E) =
∏

` prime

(
1− `2 − 2

(`2 − 1)(`− 1)

)(
1− 1

`

)−1
.

One of the first results in the direction of Koblitz’s conjecture was by Miri and Murty [15].
Assuming the Generalised Riemann hypothesis, they showed that the number of primes p ≤ x
such that Np is a product of at most 16 prime factors (counting multiplicity) is � x/(log x)2, as
x → ∞. This was followed by work of Steuding and Weng [28, 27], who obtained such results
under GRH with Np being a product of atmost 6 distinct prime factors. David and Wu [8] were
able to show this withNp being a product of atmost 8 prime factors, under the weaker assumption
of a suitable zero-free region instead of GRH. For CM curves, Cojocaru [5] showed unconditionally
that the number of primes p ≤ x such that Np has at most 5 prime factors is ≥ C(E)x/(log x)2, for
some positive constant C(E).

The Koblitz conjecture is known to hold on average over certain families of elliptic curves due to
the work of Balog, Cojocaru and David [2] and subsequent results of Giberson [9] in the number
field setting. Related questions about the size and arithmetic behaviour of Np as p varies over
primes of good reduction have been investigated by Iwaniec and Jiménez Urroz [11], and Akbary,
Ghioca and Murty [1]. We refer the interested reader to the excellent articles [4] and [6] by Cojocaru
for an introduction to related problems on elliptic curves.

Based on some known examples with respect to the Lang-Trotter conjecture, it is known that
there are curves for which C(E) = 0. This occurs because the probabilities of the events ` - Np

may not be multiplicative, since the events may not be independent. This crucial observation was
first made by Jones [3] and Zywina [30]. In particular, Zywina points out that in some cases, there
may be an obstruction to the primality ofNp in the form of an integer tE > 1 which divides almost
all of the values ofNp. In order to take this into account and still continue to count prime values of
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Np up to such obstructions, Zywina formulated a refined version of the Koblitz conjecture. While
Zywina’s conjecture is more general and applies to an elliptic curve over a number field K, we
state the same below in the case K = Q.

Conjecture 2 (Zywina [30], 2009). Let E/Q be an elliptic curve with conductor NE . Let t be a positive
integer. Then there exists an explicit constant CE,t ≥ 0 such that

#

{
p ≤ x : p - NE ,

Np

t
is prime

}
∼ CE,t

x

(log x)2
,

as x→∞.

We may express the above asymptotic as∑
p≤x,p-NE

Np≡0 (mod t)

Λ

(
Np

t

)
∼ CE,t Li(x). (2.2)

In this paper, we are motivated by Koblitz’s initial analogy of his conjecture with the twin prime
problem. The twin prime conjecture is intimately connected to a phenomenon known as the par-
ity problem. This principle was heuristically formulated by Selberg [22] to capture the inability
of sieve methods to detect prime numbers. In recent work, Murty and Vatwani [19] reformulated
the parity problem in terms of cancellations in certain summatory functions involving the Möbius
function. More precisely, they formulated an analogue of the Chowla conjecture asserting equidis-
tribution of the Möbius function over shifted primes, and established a concrete link between this
and the twin prime conjecture (cf. Theorem 1.1, [19]).

In the context of Koblitz’s conjecture, it is natural to examine a variant of the Chowla conjecture
which would capture equidistribution of the Möbius function over values of Np as p runs over the
primes. More precisely, we conjecture that∑

p≤x, p-NE

µ(Np) = o(Li(x))

as x→∞. In line with the refined Koblitz conjecture formulated by Zywina, one would be led to
expect the following.

Conjecture 3. We have, as x→∞, ∑
p≤x, p-NE

Np≡0 (mod t)

µ

(
Np

t

)
= o(Li(x)). (2.3)

In what follows, we will establish that Conjecture 3 is indeed closely connected to the Koblitz
conjecture, in fact is equivalent to it under some assumptions. Before stating our main theorem,
we proceed to introduce some conjectures which will arise naturally while trying to estimate the
density of primes p for which Np/t is prime.

A fundamental ingredient involved in the study of the twin prime problem is the distribution of
primes in arithmetic progressions. More generally, one may formulate an equidistribution result
for primes in arithmetic progressions, with “level of distribution” 0 < θ < 1 as follows.

Elliott-Halberstam Conjecture EH(xθ). Let π(x, q, a) = #{p ≤ x : p ≡ a (mod q)}. For any A > 0,
we have ∑

q≤xθ
max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a)− Li y

φ(q)

∣∣∣∣�A
x

(log x)A
. (2.4)
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For θ < 1/2, this conjecture is true and is called the Bombieri-Vinogradov theorem. As we will
see, in the context of Koblitz’s conjecture, the arithmetic progression p ≡ a (mod q) is replaced by
Np ≡ 0 (mod q), calling for equidistribution of primes lying in certain Chebotarev sets instead of
arithmetic progressions. It is thus expected that what will come into play is an “average” result
related to the Chebotarev density theorem. We will precisely formulate such an elliptic analogue
of the Elliott-Halberstam Conjecture, referred to as EHE,t(x

θ), in Section 6.
Conjecture EHE,t(x

θ) does not suffice to break the parity barrier, as in the classical twin-prime
case. We also require equidistribution of the Möbius function on the values of Np, in arithmetic
progressions. We thus postulate the following conjecture which can be thought of as an elliptic
analogue of the Elliott-Halberstam conjecture with a Möbius shift.

Conjecture EHE,t,µ(xθ). (Elliptic analogue of the Elliott-Halberstam Conjecture with a Mobius
shift) Let t be a fixed positive integer and L = L(E) be the integer appearing in Theorem 3.3. Then for any
A > 0, we have ∑

d≤xθ
max
y≤x

∣∣∆E,µ(y, d, t)
∣∣�A

x

(log x)A
(2.5)

where,

∆E,µ(y, d, t) :=
∑
p≤y

Np≡0 (mod dt)
p-dtNE

µ

(
Np

t

)
− 1

ω(td1)δ(d2)

∑
p≤y
p-NE

µ

(
Np

t

)
, (2.6)

and d = d1d2 is the unique factorization of d such that rad(d1)|tL, and (d2, tL) = 1. The functions ω and
δ will be precisely defined in Section 3 (see (3.4)).

In our approach, a significant distinction between the Koblitz conjecture and the twin prime
conjecture arises from the fact that the former necessitates bounding the number of primes p such
that Np = p + 1 − ap takes a given value n. In the twin prime case, as one is dealing with a fixed
shift p + 2, this aspect does not arise. Accordingly, letting n be a fixed positive integer, consider
the arithmetic function

ME(n) := #{p : Np = n}.
By the Hasse bound, a trivial bound for ME(n) is

ME(n)�
√
n

log(n+ 1)
.

In [13], Kowalski posed a question about the asymptotic growth of ME(n) as n → ∞. He conjec-
tured the bound

ME(n)�E,ε n
ε,

for any ε > 0, and was able to show this when E has complex multiplication. More precisely, he
showed the following when E has CM by an order O in the ring of integers OK of an imaginary
quadratic field K.

Proposition 2.1. [13, Proposition 5.3] Let rK(n) = #{a ⊂ OK : N(a) = n}, where N(a) := |OK/a|
denotes the norm of a nonzero ideal a of OK . We have

ME(n)�E rK(n).

While it is expected based on heuristic evidence that ME(n) should be even smaller, no result
better than the trivial bound is known for non-CM curves. In [7], David and Smith predicted via
a probabilistic model that the order of magnitude of ME(n) is likely to be close to 1

logn and were
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able to show this on average over a family of elliptic curves. The average order ofME(n) is known
to be 1/ log n. In particular, it is known (see [13]) that∑

n≤x
ME(n) = π(x) +O(

√
x) ∼ x

log x
. (2.7)

We postulate an estimate of the following form.

Conjecture 4. For d ≤ x, we have ∑
n≤x
d|n

ME(n)�E
x(log x)C

d
,

for some C = C(E) > 0.

We are now in a position to state our main result, establishing a conditional equivalence be-
tween (2.2) and (2.3). More significantly, assuming the aforementioned conjectures, we are able to
compute the explicit form of the refined Koblitz constant CE,t of Conjecture 2. This is the first re-
sult where the conjectured constant is conditionally determined. This validates existing heuristic
predictions for the constant, which were hitherto supported by numerical evidence and average
results over a family of elliptic curves. As we will show in Section 4, the expression derived by us
for the constant agrees with that described by Zywina in [30, Proposition 2.4].

Theorem 2.2. Let E be a fixed non-CM elliptic curve over Q with conductor NE . Let L = L(E) be the
fixed positive integer given by Serre’s result (Theorem 3.3) and let t be a fixed positive integer. Let Np be
the number of points on the curve Ep, where the curve Ep := E modulo p. Suppose that the conjectures
EHE,t(x

θ(log x)B), EHE,t,µ(x1−θ) are true for some fixed 1/2 ≤ θ < 1 and a suitably large fixed B > 0.
Suppose that Conjecture 4 holds. We then obtain the following:

(a) Conjecture 3 is equivalent to the refined Koblitz conjecture. That is, the assertion (2.3) is equivalent
to the assertion (2.2), with the refined Koblitz constant given by

CE,t =

( ∑
r|tL

µ(r)

ω(tr)

)
∏
p|tL

(
1− 1

p

) ∏
p-tL

(
1− p2 − p− 1

(p− 1)3(p+ 1)

)
, (2.8)

where ω is a function defined precisely in Section 3 (cf. (3.4)).
(b) We have ∑

p≤x,p-NE
Np≡0 (mod t)

Λ

(
Np

t

)
≥ (1− o(1))CE,t(1−AE,L) Lix,

where

AE,L =

(
1− (`4 − 2)

(`2 − 1)2(`2 + 1)

)
, (2.9)

and ` is the least prime coprime to L(E).

In what follows, we may at times drop the conditionNp ≡ 0 (mod t) that appears in expressions
of the form (2.3) and (2.2), taking it to be implied by the support of the arithmetical functions
Λ and µ. The paper is organized as follows. In Section 3, we set things up in order to invoke
the Chebotarev density theorem in our analysis. In Section 4, we compare our expression for
the refined Koblitz constant with the expression conjectured by Zywina in [30]. In Section 6, we
formulate the elliptic analogue of the Elliott-Halberstam conjecture. The proof of Theorem 2.2 is
contained in Sections 8 and 9.
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3. THE GALOIS REPRESENTATION AND THE CHEBOTAREV DENSITY THEOREM

Continuing with our previous notation, letE be an elliptic curve defined over Q with conductor
NE . For d ≥ 2, let E[d] denote the subgroup of d-torsion points inside E(Q). Let Kd := Q(E[d]) be
the finite Galois extension of Q obtained by adjoining the coordinates of the d-torsion points of E.
Consider the natural group action of Gal(Q/Q) on E[d] given by

ρ : Gal(Q/Q)→ Aut(E[d]).

Let us assume (d,NE) = 1 in which case we have E[d] ' (Z/dZ)2 and hence Aut(E[d]) '
GL2(Z/dZ). Therefore the Galois representation ρ factors as follows:

ρ : Gal(Q/Q) � Gal(Kd/Q)
ρd
↪→ GL2(Z/dZ).

For brevity, let us use the notation G := Gal(Kd/Q), G(d) := ρd(G). Let p be a non-zero prime
of Q such that E has good reduction at p, that is p - NE . If p - d, then p is unramified in Kd (cf.
Theorem 7.1, Chapter VII, [26]). Recall that to each prime ideal p lying above p, we can associate
what is called the Frobenius automorphism Frobp of p (cf. [17, ch. 11.3] for more details). Then, as
p ranges over the prime ideals above p, the Frobenius elements Frobp comprise a conjugacy class
of Gal(Kd/Q), which is called the Artin symbol of p. We denote it by σp. By abuse of notation,
we will denote the image ρd(σp) ⊆ GL2(Z/dZ) as σp as well. It is known that the characteristic
polynomial of ρd(Frobp) is

t2 − apt+ p,

where ap ≡ p + 1 −Np (mod d) and p ≡ p (mod d). As a consequence, we have Np ≡ 0 (mod d)
iff σp is contained in a conjugacy class of G(d) consisting of elements having 1 as an eigenvalue.

More precisely, let us define

Ψ0(d) := {A ∈ Aut(E[d]) ' GL2(Z/dZ) | det(I −A) ≡ 0 (mod d)}, (3.1)

andC(d) := G(d)∩Ψ0(d). Then the primes p - dNE such thatNp ≡ 0 (mod d) are precisely those
for which σp ⊆ C(d). By the Chebotarev density theorem, the natural density of such primes is
the ratio

|C(d)|
|G(d)|

. (3.2)

In order to make the above ratio explicit, we will need the following properties of the set Ψ0(d).

Lemma 3.1. If (d1, d2) = 1 then Ψ0(d1d2) ' Ψ0(d1)×Ψ0(d2).

Proof. This follows upon using the isomorphism

Z/d1d2Z ' Z/d1Z× Z/d2Z
to construct a well defined isomorphism ψ : Ψ0(d1d2) −→ Ψ0(d1)×Ψ0(d2). �

Lemma 3.2. Let ` be a prime. Then |Ψ0(`)| = `3 − 2`.

Proof. The cardinality |Ψ0(`)| counts all those matrices A in GL2(Z/dZ) which have 1 as an eigen-
value. This means that the characteristic polynomial char(A) is (x − 1)(x − a), where a ∈ F∗` . We
recall the following result by Zywina [cf. Lemma 2.5, [30]]

# {A ∈ GL2(F`) : eigen values of A are 1 and a} =

{
`2 + `, if a 6= 1

`2, if a = 1.

Hence |Ψ0(`)| = `2 + (`− 2)(`2 + `) = `3 − 2`, as required. �

We will also need to invoke the following important result of Serre [24] for non-CM elliptic
curves.
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Theorem 3.3 (Serre). For a number field K, let E/K be an elliptic curve defined over K without complex
multiplication. Then there exists a positive integer L = L(E) such that if d1, d2 ∈ N with (Ld1, d2) = 1,
then

G(d1d2) = G(d1)×Aut(E[d2]).

We will simplify the density (3.2) as follows. Let L be the integer appearing in Theorem 3.3.
Given an integer d, we first uniquely write d = d1d2, such that rad(d1)|L and (d2, L) = 1. Then
using Lemma 3.1 and Theorem 3.3, we obtain

|C(d)|
|G(d)|

=
|G(d1d2) ∩Ψ0(d1d2)|

|G(d1d2)|
=
|G(d1) ∩Ψ0(d1)|

|G(d1)|
· |Aut(E[d2]) ∩Ψ0(d2)|

|Aut(E[d2])|
.

=:
1

ω(d1)
· 1

δ(d2)
, (3.3)

where

ω(d) =
|G(d)|

|G(d) ∩Ψ0(d)|
, δ(d) =

|Aut(E[d])|
|Aut(E[d]) ∩Ψ0(d)|

. (3.4)

Keeping in mind that Aut(E[d]) ' GL2(Z/dZ), we see from Lemma 3.1 that δ is a multiplicative
function. Using Lemma 3.2, we see that on primes ` - L, it is given by

δ(`) =
(`− 1)(`2 − 1)

(`2 − 2)
. (3.5)

Furthermore, by a similar argument as in Lemma 3.2, it can be shown that

δ(q) =
(q − 1)(q2 − 1)

(q2 − 2)
, (3.6)

where q = `r for some r ∈ N, and ` - L.
Let t be a fixed positive integer. Recall that the refined Koblitz conjecture is concerned with the
number of primes p ≤ x, p - NE , such that Npt is prime. While trying to sieve out composite values
of Npt , we will be led to estimate

πE(x, d, t) := #

{
p ≤ x : p - tdNE ,

Np

t
≡ 0 (mod d)

}
. (3.7)

Since Np/t ≡ 0 (mod d) iff σp ⊆ C(td), from the Chebotarev density theorem and the expressions
(3.3) and (3.4), we immediately find that as x→∞,

πE(x, d, t) ∼ 1

ω(td1)

1

δ(d2)
Li(x), (3.8)

where d = d1d2 is the unique factorization of d such that rad(d1)|tL, and (d2, tL) = 1.

Estimation of the error terms involved in (3.8) is a deep question. Effective versions of the
Chebotarev density theorem have been given by Lagarias and Odlyzko [14], and Serre [25]. Re-
finements of these effective versions and applications to modular forms have been studied by M.
R. Murty, V. K. Murty and N. Saradha [18]. Recently, Pierce, Turnage-Butterbaugh and Wood [21]
established an unconditional effective version of the Chebotarev density theorem which holds for
“almost all” number fields in a certain family of field extensions. Using the explicit versions of
the Chebotarev density theorem given in [14] and [25], and assuming GRH for Artin L-functions,
Steuding and Weng [28] obtained the estimate

πE(x, d, t) =
1

ω(td1)
· 1

δ(d2)
Li(x) +O

(
d3/2x1/2 log (dNEx)

)
,

where d = d1d2 with rad(d1)|L, and (d2, L) = 1.
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As pointed out by Cojocaru [5, Remark 12], one may also assume a more relaxed formulation
of GRH using the results in [14]. More precisely, assuming that the Dedekind zeta functions of the
division fields of E do not vanish for Re(s) > θ, for some 1/2 ≤ θ < 1, we have

πE(x, d, t) =
1

ω(td1)
· 1

δ(d2)
Li(x) +O

(
d3xθ log (dNEx)

)
.

As stated in [5, Remark 13], from the results in [14], we have the following unconditional estimates
for small d. For d� log log x, we have

πE(x, d, t) =
1

ω(td1)
· 1

δ(d2)
Li(x) +OA

(
d3

x

(log x)A

)
, (3.9)

for any A > 0.
We conclude this section by recording a bound on 1

δ(n) , which will be of use to us in later sec-
tions.

Lemma 3.4. Let L be the fixed positive integer appearing in Theorem 3.3. There exists an absolute constant
D > 0 such that for (n,L) = 1, we have

1

δ(n)
� (log n)D

n
.

Proof. For a prime ` - L, may write (3.6) as

1

δ(`r)
=

1

`r
+O

(
1

`2r

)
. (3.10)

Let n be an integer coprime to L, given by n =
m∏
i=1

`αii , where αi ∈ N. We then have,

1

δ(n)
=

m∏
i=1

1

`αii

(
1 +O

(
1

`αii

))
=

1

n

m∏
i=1

(
1 +O

(
1

`αii

))
≤ 1

n
exp

(
O

( m∑
i=1

1

`αii

))
using the inequality 1 + x ≤ exp(x). Since αi ≥ 1 for each i and

m∑
i=1

1

`αii
�
∑
`≤n

1

`
� log log n,

we obtain the desired bound. �

4. COMPARISON OF (2.8) WITH THE CONJECTURED EXPRESSION FOR CE,t

In this section, we will compare the expression (2.8) for CE,t with that conjectured by Zywina
in [30]. We first set up some notation and establish some essential lemmas.

For any integer m, let Rm := Z/mZ. Let d1, d2 be positive integers such that (d1, d2) = 1. Then
by the Chinese remainder theorem we have the following isomorphism of rings

Rd1d2 ' Rd1 ×Rd2 .
Under the above isomorphism, the reduction modulo d1 map from Rd1d2 to Rd1 is given by the
first projection

Rd1d2 ' Rd1 ×Rd2
pr1−−→ Rd1

x 7−→ x (mod d1).

This induces the isomorphism of groups

GL2(Rd1d2) ' GL2(Rd1)×GL2(Rd2).
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Let Im denote the identity matrix in GL2(Rm). Under the above isomorphism, an element A ∈
GL2(Rd1d2) can be represented as a tuple (A1, A2), where A1 ∈ GL2(Rd1) and A2 ∈ GL2(Rd2).

Recall that Km is the finite field extension of Q obtained by adjoining the coordinates of the
m-torsion points and G(m) is the Galois group of the extension Km/Q, identified with a subset of
GL2(Rm). Consider the short exact sequence of groups

0→ H → G(d1d2)
f−→ G(d1)→ 0, (4.1)

where f : G(d1d2)→ G(d1) is the natural surjection of Galois groups. Consider the subsets

Gd1(d1d2) := {A ∈ G(d1d2)| det(I −A) ≡ 0 (mod d1)} (4.2)

and
Gd1(d1) := {A ∈ G(d1)|det(I −A) ≡ 0 (mod d1)}.

Then we have the following commutative diagram,

Gd1(d1d2) Gd1(d1)

0 H G(d1d2) G(d1) 0

0 GL2(Rd2) GL2(Rd1d2) GL2(Rd1) 0

GL2(Rd1)×GL2(Rd2)

fGd1 (d1d2)

f

ρd1d2 ρd1

pr1

'

where we denote the restriction of f to Gd1(d1d2) as fGd1 (d1d2).

Lemma 4.1. The map
fGd1 (d1d2) : Gd1(d1d2)→ Gd1(d1)

is a surjection of sets.

Proof. Let A1 ∈ Gd1(d1) ↪→ G(d1). Since

f : G(d1d2)→ G(d1)

is a surjection, there exists A ∈ G(d1d2) such that f(A) = A1. Since A ∈ G(d1d2) ↪→ GL2(Rd1d2), A
can be expressed as A = (A1, A2), where A2 ∈ H. Now A1 satisfies

det(Id1 −A1) ≡ 0 (mod d1).

But

det(Id1d2 −A) (mod d1) = det(Id1 −A1) (mod d1)

≡ 0 (mod d1).

Hence A = (A1, A2) ∈ Gd1(d1d2) and hence A is in the preimage of A1 under fGd1 (d1d2). �

Lemma 4.2. Let A ∈ Gd1(d1d2) and let B ∈ H. Then AB ∈ Gd1(d1d2).

Proof. Let A = (A1, A2) ∈ Gd1(d1d2), then it satisfies

det(Id1 −A1) ≡ 0 (mod d1).

Let B = (B1, B2) ∈ H ↪→ G(d1d2). Since f(B) = Id1 ∈ G(d1), we have B1 = Id1 and hence
B = (Id1 , B2). Now we have

AB = (A1, A2)(Id1 , B2) = (A1, A2B2)
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which implies

det(Id1d2 −AB) (mod d1) = det(Id1 −A1) (mod d1) ≡ 0 (mod d1)

since A1 ∈ Gd1(d1). Hence AB ∈ Gd1(d1d2) and we are done. �

Lemma 4.3. For all A1 ∈ Gd1(d1), we have f−1Gd1 (d1d2)
(A1) = AH, where A ∈ Gd1(d1d2) is such that

fGd1 (d1d2)(A) = A1.

Proof. Note that f−1Gd1 (d1d2)
(A1) ⊆ AH, since A lies in the preimage of A1. For any B ∈ H, by

Lemma 4.2 , AB ∈ Gd1(d1d2) and note that f(AB) = A1, that is, AB is in the preimage of A1.

Hence AH ⊆ f−1Gd1 (d1d2)(A1). Therefore, f−1Gd1 (d1d2)
(A1) = AH and we are done. �

Theorem 4.4. For any d1, d2 satisfying (d1, d2) = 1, we have

|Gd1(d1d2)| = |Gd1(d1)||H|.

Proof. Let n = |Gd1(d1)| and Gd1(d1) = {A1, A2, ..., An}. Consider

fGd1 (d1d2) : Gd1(d1d2)→ Gd1(d1).

From Lemma 4.3, for any Ai ∈ Gd1(d1), we have f−1Gd1 (d1d2)
(Ai) = AH for some A ∈ Gd1(d1d2).

Since fGd1 (d1d2) is a surjection, we have

Gd1(d1d2) =

n⊔
i=1

f−1Gd1 (d1d2)
(Ai).

Therefore, we obtain

|Gd1(d1d2)| =
n∑
i=1

∣∣f−1Gd1 (d1d2)(Ai)∣∣ = |Gd1(d1)||H|.

�

Corollary 4.5. For all d1, d2 such that (d1, d2) = 1, we obtain

|Gd1(d1d2)|
|G(d1d2)|

=
|Gd1(d1)|
|G(d1)|

.

Proof. From the short exact sequence (4.1), we get

|G(d1d2)| = |G(d1)||H|.
By Theorem 4.4 , we have

|Gd1(d1d2)| = |Gd1(d1)||H|.
Hence combining the above we obtain our result. �

4.1. The constant CE,t. The constant CE,t described by Zywina [30, Proposition 2.4] is given by

CE,t =

δE,t

(
t
∏
`|tL

`

)
∏
`|tL

(
1− 1/`

) ∏
`-tL

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
, (4.3)

where

δE,t(m) :=
|G(m) ∩Ψt(m)|
|G(m)|

, (4.4)

Ψt(m) := {A ∈ Aut(E[m]) ' GL2(Z/mZ) | det(I −A) ∈ t(Z/mZ)∗}.
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Let m = trad(tL). As discussed in Section 2.1 of [30], we have Np ≡ det(I − ρm(σp)) (mod m).
Moreover, δE,t is the natural density of primes for which Np/t is an integer that is coprime to
rad(tL).

For a given divisor d of m, consider the set

Gtd(m) = G(m) ∩ {A ∈ Aut(E[m]) ' GL2(Z/mZ) | det(I −A) ≡ 0 (mod td)}. (4.5)

Thus, for a prime p - NE , Np ≡ 0 (mod td) if and only if ρm(σp) ⊆ Gtd(m). By the Chebotarev
density theorem, the natural density of the primes for which Np/t is an integer divisible by d is
thus |Gtd(m)|/|G(m)|.

Since δE,t is the complement of the natural density of primes for which Np/t is divisible by some
non-trivial divisor d of m, we see that inclusion-exclusion gives us

δE,t = 1−
∑
d|m
d>1

µ(d)
|Gtd(m)|
|G(m)|

=
∑

d|rad(tL)

µ(d)
|Gtd(m)|
|G(m)|

.

Now, for each divisor d of rad(tL) consider the factorization t = t1t2, where where rad(t1) = (d, t)
and (t2, d) = 1. Then for the integer Np/t, we have

Np

t
≡ 0 (mod d)⇐⇒

(
Np

t

)
t2 ≡ 0 (mod d), (4.6)

since (t2, d) = 1. Since the latter congruence above occurs if and only if ρm(σp) ⊆ Gt1d(m), we
may replace the density |Gtd(m)|/|G(m)| by |Gt1d(m)|/|G(m)|. We thus obtain

δE,t(m) =
∑

d|rad(tL)

µ(d)
|Gt1d(m)|
|G(m)|

.

Writing rad(tL) = dd′, we see that m = t1t2dd
′, where (t1d, t2d

′) = 1. Using Corollary 4.5 twice
gives

|Gt1d(m))|
|G(m)|

=
|Gt1d(t1d)|
|G(t1d)|

=
|Gt1d(td)|
|G(td)|

.

Again, using (4.6), we may replace |Gt1d(td)|/|G(td)| by the density |Gtd(td)|/|G(td)|, which is
simply 1/ω(td) (see (3.4)). This gives

δE,t(trad(tL)) =
∑

d|rad(tL)

µ(d)

ω(td)
, (4.7)

so that the expression (2.8) does indeed agree with (4.3).

5. PRELIMINARIES

In this section, we state some lemmas that will be useful to us later in the paper. Let ν(L) denote
the number of distinct prime factors of L.

Lemma 5.1. Let L be a fixed positive integer. As x→∞, we have∑
n≤x

rad(n)|L

1� (2 log x)ν(L).
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Proof. Let rad(L) = p1p2...pk. Then the required sum counts atmost the number of integers n of
the form pα1

1 pα2
2 ...pαkk with 0 ≤ αi ≤ log x

log pi
. Thus,

∑
n≤x

rad(n)|L

1 ≤
k∏
i=1

(
1 +

log x

log pi

)
�

k∏
i=1

(2 log x)� (2 log x)ν(L).

�

Lemma 5.2. Let L be a fixed positive integer. We have∑
n≤x

rad(n)|L

(τ3(n))2 � (2 log x)12ν(L).

Proof. It is easy to see that τ3(n)� (τ(n))3. Hence,∑
n≤x

rad(n)|L

(τ3(n))2 �
∑
n≤x

rad(n)|L

(τ(n))6 �
( ∑

n≤x
rad(n)|L

τ(n)

)6

. (5.1)

Now, ∑
n≤x

rad(n)|L

τ(n) =
∑
n≤x

rad(n)|L

∑
d|n

1 =
∑
d≤x

rad(d)|L

∑
m≤x/d

rad(m)|L

1

� (2 log x)2ν(L),

using Lemma 5.1. Putting this into (5.1) completes the proof. �

6. AN ELLIPTIC ANALOGUE OF THE ELLIOTT-HALBERSTAM CONJECTURE

In Section 3, we discussed the asymptotic (3.8) for πE(x, d, t) that follows from the Chebotarev
density theorem. In the context of the Koblitz conjecture, we will need (3.8) with the error term
controlled on average over moduli d in a certain range. This can be thought of as an elliptic ana-
logue of the Elliott-Halberstam conjecture given in (2.4).

Conjecture EHE,t(x
θ) : Elliptic analogue of the Elliott-Halberstam Conjecture. Let L = L(E) be

the fixed positive integer given by Serre’s result (Theorem 3.3) and let t be a fixed positive integer. Define

∆E(y, d, t) := πE(y, d, t)− Li(y)

ω(d1t)δ(d2)
, (6.1)

where d = d1d2 is the unique factorization of d such that rad(d1)|tL and (d2, tL) = 1. Then we have as
x→∞, ∑

d≤xθ
max
y≤x

∣∣∆E(y, d, t)
∣∣�A

x

(log x)A
(6.2)

for any A > 0.

A pivotal step in the proof of our main result is the derivation of a variant of Conjecture
EHE,t(x

θ). Assuming the elliptic analogue of the Elliott-Halberstam Conjecture given above, we
derive an equidistribution result for primes p with Np

t in an arithmetic progression, satisfying the
additional constraint that Npt is squarefree. Towards this goal, we consider

π∗E(x, d, t) := #

{
p ≤ x : p - dtNE ,

Np

t
≡ 0 (mod d), µ2

(
Np

t

)
6= 0

}
. (6.3)
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We obtain the following conditional result for π∗E(x, d, t), with the error term controlled on average
in the range d ≤ xθ.

Theorem 6.1. Assume that Conjecture 4 holds. Suppose that Conjecture EHE,t

(
xθ(log x)B

)
is true for

some fixed 0 < θ < 1, and a suitably large absolute constant B. Let L = L(E) be the fixed positive integer
given by Theorem 3.3. Let

∆µ2(y, d, E, t) = π∗E(y, d, t)− Li(y)

∞∑
e=1

µ(e)

ω(t[d1, e21])δ([d2, e
2
2])
,

where d = d1d2 is the unique factorization of d such that rad(d1)|tL, and (d2, tL) = 1. Similarly for
e = e1e2. Then, as x→∞, we have∑

d≤xθ
µ2(d) max

y≤x

∣∣∆µ2(y, d, E, t)
∣∣�A

x

(log x)A
, (6.4)

for any A > 0.

The remainder of this section will be devoted towards completing the proof of Theorem 6.1.

Proof of Theorem 6.1. Recall the identity

∑
e2|n

µ(e) =

{
1, if n is squarefree
0, otherwise.

(6.5)

Using this we may write,

π∗E(x, d, t) =
∑
p≤x

p-tdNE
Np
t
≡0 (mod d)

µ2
(
Np

t

)
=

∑
p≤x

p-tdNE
Np
t
≡0 (mod d)

∑
e2|Np

t

µ(e). (6.6)

Let z ≤ x be a function of x, to be chosen later. We write,

π∗E(x, d, t) = π∗E(x, d, t; z) + π̃E(x, d, t; z), (6.7)

where,

π∗E(x, d, t; z) =
∑
p≤x

p-tdNE
Np
t
≡0 (mod d)

∑
e2|Np

t
e≤z

µ(e) (6.8)

and
π̃E(x, d, t; z) =

∑
p≤x

p-tdNE
Np
t
≡0 (mod d)

∑
e2|Np

t
e>z

µ(e). (6.9)

We expect the tail sum π̃E(x, d, t; z) to be negligible as z →∞. Indeed, we prove the following.

Proposition 6.2. Suppose Conjecture 4 holds. Let z = (log x)B, where B is a sufficiently large absolute
constant. Then for any A > 0,∑

d≤xθ
µ2(d) max

y≤x

∣∣π̃E(y, d, t; z)
∣∣�A

x

(log x)A
.
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Proof. We have

π̃E(y, d, t; z) =
∑
p≤y

p-tdNE
Np
t
≡0 (mod d)

∑
e2|Np

t
e>z

µ(e)

=
∑

z<e≤√y+1

µ(e)
∑
p≤y

p-tdNE
Np≡0 (mod t([d,e2]))

1,

upon changing the order of summation and using the Hasse bound |ap| ≤ 2
√
p. Hence,

max
y≤x
|π̃E(y, d, t; z)| ≤

∑
z<e≤

√
x+1

∑
p≤x

Np≡0 (mod t([d,e2]))

1 (6.10)

For the inner sum above, we will first run over possible values n ofNp and then bound the number
of primes p for which Np = n. Using Conjecture 4, we obtain∑

p≤x
Np≡0 (mod t[d,e2])

1 ≤
∑

n≤x+2
√
x+1

n≡0 (mod (t[d,e2]))

∑
p:Np=n

1

=
∑

n≤x+2
√
x+1

n≡0 (mod (t[d,e2]))

ME(n)

� x(log x)C

t[d, e2]
, (6.11)

for some C > 0. We write d = d′r, e = e′r, where r = (d, e). As d is squarefree, we have [d, e2] =
d′e′2r2. We then have∑

d≤xθ
µ2(d)

∑
z<e≤

√
x+1

x(log x)C

t[d, e2]
� x(log x)C

∑
r≤xθ

1

tr2

∑
d′≤xθ

1

d′

∑
z/r<e′≤

√
x+1

1

e′2

� x(log x)C
∑
r≤xθ

∑
d′≤xθ

1

td′rz
� x(log x)C1

z
, (6.12)

for some absolute constant C1 = C1(E) > 0. Combining (6.10), (6.11), (6.12) and choosing z =
(log x)C1+A, for A sufficiently large completes the proof. �

Let us now turn to the sum π∗(x, d, t; z), which is expected to contribute to the main term in
(6.7). We will denote it as π∗z for the remainder of the section. Upon interchanging the order of
summation, we have

π∗z :=
∑
p≤x

p-tdNE
Np
t
≡0 (mod d)

∑
e2|Np

t
e≤z

µ(e) =
∑
e≤z

µ(e)
∑
p≤x

p-tdNE
Np
t
≡0 (mod [d,e2])

1.

Let us note that if p | [d, e2], then the inner sum is atmost∑
p≤x
p|[d,e2]
p-d

1 ≤
∑
n|e2

Λ(n) = log(e2).
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Thus, the contribution of primes p | [d, e2] to π∗z is of the order∑
e≤z

log(e2)� z log(z2). (6.13)

recall that we chose z = (log x)B with B sufficiently large in Proposition 6.2. The contribution
(6.13) is hence negligible and we may assume p - [d, e2] henceforth. In other words, as x→∞,

π∗z ∼
∑
e≤z

µ(e)
∑
p≤x

p-t[d,e2]NE
Np
t
≡0 (mod [d,e2])

1

=
∑
e≤z

µ(e)πE(x, [d, e2], t),

where πE(x, [d, e2], t) is as defined in (3.7). Let [d, e2] = [d, e2]1[d, e
2]2 be the unique factorization

of [d, e2]2 with rad([d, e2]1)|tL, and [d, e2]2 coprime to tL. It is easy to see that [d, e2]i = [di, e
2
i ], for

i = 1, 2, where d = d1d2, rad(d1)|tL, (d2, L) = 1, and similarly for e = e1e2. Therefore, applying
(6.1) we have

π∗z ∼
∑
e≤z

µ(e)
Li(x)

ω(t[d, e2]1)δ([d, e2]2)
+O

(∑
e≤z

µ2(e) |∆E(x, [d, e2], t)|
)

= M(x, d, t; z) + E(x, d, t; z) (say). (6.14)

We now proceed towards simplifying the main term M(x, d, t; z) in (6.14). A natural step is to get
rid of the dependence on z. Let us write,

M(x, d, t; z) = Li(x)

∞∑
e=1

µ(e)

ω(t[d1, e21])δ([d2, e
2
2])
− Li(x)

∑
e>z

µ(e)

ω(t[d1, e21])δ([d2, e
2
2])

= M(x, d, t)− M̃(x, d, t; z) (say). (6.15)

As our next step, we show that the tail sum M̃ above is negligible on average over d, as z →∞.

Proposition 6.3. Let z = (log x)B, where B > 0 is a sufficiently large constant. Then for any A > 0,∑
d≤xθ

µ2(d) max
y≤x

∣∣M̃(y, d, t; z)
∣∣�A

x

(log x)A
.

Proof. We have from (6.15),∑
d≤xθ

µ2(d) max
y≤x
|M̃ | � Li(x)

∑
d≤xθ

µ2(d)
∑
e>z

µ2(e)

δ([d2, e22])
,

since ω(n) ≥ 1 for all n ∈ N. As e = e1e2 is squarefree with rad(e1)|tL, in the above sum over e,
we have e2 > e

tL >
z
tL and e1 ranging over divisors of tL. Hence,∑

d≤xθ
µ2(d) max

y≤x
|M̃ | � Li(x)τ(tL)

∑
d≤xθ

µ2(d)
∑
e2>

z
tL

1

δ([d2, e22])

� Li(x)τ(tL)
∑
d1|tL

1
∑
d2≤xθ

µ2(d2)
∑
e2>

z
tL

(log[d2, e
2
2])

D

[d2, e22]
,
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using the factorization d = d1d2 and applying Lemma 3.4. Writing d2 = d′2r, e2 = e′2r, where
r = (d2, e2), we have [d2, e

2
2] = d′22 e

′2
2 r

2. This gives∑
d≤xθ

max
y≤x
|M̃ | � Li(x)(τ(tL))2

∑
r≤xθ

∑
d′2≤xθ

∑
e′2>

z
tLr

log(d′22 e
′2
2 r

2)

d′22 e
′2
2 r

2
.

As done in the proof of Proposition 6.2, one can show that the inner triple sum over r, d′2 and e′2
is�t,L

(log x)C

z for some absolute constant C > 0. Choosing z = (log x)A+C for A sufficiently large
completes the proof. �

Coming back to (6.14), we now show that if we assume EHE,t(x
θ) for some 0 < θ < 1, then

the error term E(x, d, t; z) can be controlled on average in almost the same range of d, conditional
upon Conjecture 4.

Proposition 6.4. Let z = (log x)B, where B > 0 is a sufficiently large constant. Suppose Conjecture 4
and Conjecture EHE,t(x

θz2) hold. Then for any A > 0, we have∑
d≤xθ

µ2(d) max
y≤x

∣∣E(y, d, t; z)
∣∣� x

(log x)A
.

Proof. We will denote E(y, d, t; z) as E(y) in this proof. Put r = [d, e2]. It can be shown that the
number of d and e such that [d, e2] = r is atmost τ3(r). From the definition of E(y) in (6.14) we get∑

d≤xθ
µ2(d) max

y≤x

∣∣E(y)
∣∣ � ∑

r≤xθz2
τ3(r) max

y≤x
|∆E(y, r, t)|.

Now using the Cauchy- Schwarz inequality we have,∑
d≤xθ

µ2(d) max
y≤x
|E(y)| �

( ∑
r≤xθz2

(τ3(r))
2 max
y≤x
|∆E(y, r, t)|

) 1
2
( ∑
r≤xθz2

max
y≤x
|∆E(y, r, t)|

) 1
2

(6.16)

The hypothesis EHE,t(x
θz2) yields that the second term on the right hand side of (6.16) is

�A

(
x

(log x)A

)1/2

,

for any A > 0. Thus, in order to complete the proof, it suffices to show that the first term on the
right hand side of (6.16) is of the order

(x(log x)C)1/2 (6.17)

for some absolute constant C > 0. Let us observe that by definition (6.1),

max
y≤x

∣∣∆E(y, r, t)
∣∣ ≤ ∣∣∣∣ ∑

p≤x, p-trNE
Np≡0 (mod tr)

1

∣∣∣∣+

∣∣∣∣ Li(x)

ω(tr1)δ(r2)

∣∣∣∣.
We estimate the contribution of the final term above to (6.16) as follows. Upon using Lemma 3.4
followed by Lemma 5.2, we have

Li(x)
∑

r≤xθz2

(τ3(r))
2

ω(tr1)δ(r2)
� Li(x)

∑
r1≤xθ

rad(r1)|tL

(τ3(r1))
2
∑

r2≤xθz2

(τ3(r2))
2(log r2)

D

r2

� Li(x)(2 log x)12ν(L)(log x)C ,



ON THE REFINED KOBLITZ CONJECTURE 17

for some absolute constant C > 0. Hence in order to show (6.17), we are left to estimate the sum∑
r≤xθz2

(τ3(r))
2

∣∣∣∣ ∑
p≤x, p-trNE
Np≡0 (mod tr)

1

∣∣∣∣.
On running over values n of Np and then over primes p such that Np = n, Conjecture 4 yields that
the above sum is

≤
∑

r≤xθz2
(τ3(r))

2
∑

n≤x+2
√
x+1,

n≡0 (mod tr)

ME(n) � x(log x)C
∑

r≤xθz2

(τ3(r))
2

tr

� x(log x)C1

for some absolute constant C1 = C1(E) > 0. This gives (6.17) and thus completes the proof. �

We are now ready to obtain Theorem 6.1 as follows. From equations (6.7), (6.14) and (6.15), it is
clear that

π∗E(x, d, t) ∼M(x, d, t)− M̃(x, d, t; z) + E(x, d, t; z) + π̃(x, d, t; z).

Then

∆µ2(y, d, E, t) = π∗E(y, d, t)−M(y, d, t)

= π̃(y, d, t; z) + E(y, d, t; z)− M̃(y, d, t; z). (6.18)

Applying Propositions 6.2, 6.3, and 6.4 to (6.18), we obtain Theorem 6.1.

7. PRELIMINARY COMPUTATIONS FOR THE KOBLITZ CONSTANT

The following special case of the Wiener-Ikehara Tauberian theorem due to D. J. Newman [20]
will be instrumental in our calculations for the constant CE,t.

Theorem 7.1 (Newman). Let |an| ≤ 1. We consider the series

F (s) :=

∞∑
n=1

an
ns
,

which is absolutely convergent for Re(s) > 1. If F (s) can be analytically continued to Re(s) ≥ 1, then the
series

∑∞
n=1

an
ns converges for Re(s) ≥ 1. Moreover, for Re(s) ≥ 1, we have

∑∞
n=1

an
ns = F (s).

We prove the following preliminary lemmas.

Lemma 7.2. Let L be any fixed positive integer. Let δ(`) be as given in (3.5) for primes ` - L. Then as
x→∞, we have ∑

d≤x,(d,L)=1

µ(d)

δ(d)
� e−c

√
log x (7.1)

for some c > 0.

Proof. Let s = σ + it, σ > 0. Consider the series

f(s) :=
∞∑
d=1

(d,L)=1

µ(d)

δ(d)ds
. (7.2)

Using Lemma 3.4 we see f(s) is absolutely convergent for Re(s) > 0. Using (3.5), we have the
following Euler product for f(s) in this region:

f(s) =
∏
`-L

(
1− (`2 − 2)

(`− 1)(`2 − 1)`s

)
.
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Multiplying and dividing by the factor
∏̀ (

1− 1
`s+1

)
, we write

f(s) = ζ(s+ 1)−1G(s), (7.3)

where ζ(s) is the Riemann-zeta function and

G(s) =
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1− 1

`s+1

)−1(
1− (`2 − 2)

(`− 1)(`2 − 1)`s

)
.

Writing the denominator of the last term in parentheses as `s(`2 − 2)`(1− x`), where

x` =
`2 − `− 1

`(`2 − 2)
,

we have

G(s) =
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1− 1

`s+1

)−1(
1− 1

`s+1(1− x`)

)
. (7.4)

Since x` = O(1` ), we have

G(s) =
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1− 1

`s+1

)−1(
1− 1

`s+1
+
O(1/`)

`s+1

)

=
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1 +

O(1/`)

`s+1

(
1− 1

`s+1

)−1)

=
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1 +O

(
1

`s+2

)
+O

(
1

`2s+3

))
.

Thus, we see that G(s) is absolutely convergent for Re(s) > −1.
We now apply a quantitative version of Perron’s formula (cf. [10, Section 3], [29, Lemma 3.12])

to get ∑
d≤x

(d,L)=1

µ(d)

δ(d)
=

1

2πi

b+iT∫
b−iT

G(s)

ζ(s+ 1)

xs

s
ds+O

(
(log x)2

T

)
, (7.5)

with b = 1
log x . Let us denote Re(s) by σ. Since we have the zero-free region (cf. [29, Theorem 3.8] )

σ ≥ 1− c0
log(|t|+ 2)

, t ∈ R,

for some c0 > 0, we can shift the above integral to the left, to the path [γ − iT, γ + iT ], where
γ = γ(t) = − c0

log(|t|+2) . This gives

∑
d≤x

(d,L)=1

µ(d)

δ(d)
=

1

2πi

 γ−iT∫
b−iT

+

γ+iT∫
γ−iT

+

b+iT∫
γ+iT

+O

(
(log x)2

T

)
, (7.6)

where the integrands are the same as in (7.5). We will obtain the required bound by estimating
each of the above integrals and choosing T suitably in terms of x.

We first estimate the upper horizontal integral. Using the bounds (cf. [29, (3.11.8)])

G(s)� 1, ζ(s)−1 � log (|t|+ 2)
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in the region σ ≥ 1− c0
log(|t|+2) , we have

b+iT∫
γ+iT

G(s)

ζ(s+ 1)

xs

s
ds� log(T + 2)

T

b∫
γ

xσ dσ � log(T + 2)

T
x

1
log x (log x)

� log(T + 2)

T
log x. (7.7)

The lower horizontal can be bounded in exactly the same way. Finally, we have
γ+iT∫
γ−iT

G(s)

ζ(s+ 1)

xs

s
ds �

T∫
0

x
− c0
log(t+2) log(t+ 2)

dt√
γ2 + t2

.

Choosing T1 such that log(T1 + 2) =
√
c0 log x
2 , we split the above integral as

T1∫
0

+
T∫
T1

, to obtain

γ+iT∫
γ−iT

G(s)

ζ(s+ 1)

xs

s
ds�

T1∫
0

x
− c0
log(t+2) log(t+ 2) dt+

T∫
T1

x
− c0
log(t+2) log(t+ 2)

dt

t

� e−2
√
c0 log x

√
log x

T1∫
0

dt+ e
− c0 log x
log(T+2) (log T )2

� e−c1
√
log x + e

− c2 log xlog T , (7.8)

for some constants c1, c2 > 0. Choosing log T =
√

log x and putting together (7.6), (7.7) and (7.8),
we have obtained ∑

d≤x
(d,L)=1

µ(d)

δ(d)
� e−c

√
log x

for some c > 0, as needed. �

Lemma 7.3. Let L = L(E) be as given in the statement of Theorem 3.3 and δ be as in (3.5). Let

F (s) =
∑

(d,L)=1

µ(d)

δ(d)ds
g(d),

where g(d) is a multiplicative function of d, satisfying g(`) = 1 + O
(
1
`

)
on primes ` dividing d, with

an absolute implied constant. Then F (s) is absolutely convergent for Re(s) > 0 and can be analytically
continued to Re(s) = 0. Moreover,∑

(d,L)=1

µ(d)

δ(d)
g(d) log(1/d) =

∏
`|L

(
1− 1

`

)−1∏
`-L

(
1− 1

`

)−1(
1− g(`)

δ(`)

)
.

Proof. From Lemma 3.4, F (s) is clearly absolutely convergent for Re(s) > 0. In this region, we
have the Euler product

F (s) =
∏
`-L

(
1− (`2 − 2)g(`)

(`− 1)(`2 − 1)`s

)
=
∏
`-L

(
1−

1 +O
(
1
`

)
`s+1(1− x`)

)
where

x` =
`2 − `− 1

`(`2 − 2)
,
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as done in (7.4). As done in the proof of Lemma 7.2, we may write

F (s) = ζ(s+ 1)−1H(s), (7.9)

where

H(s) =
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1− 1

`s+1

)−1(
1− (`2 − 2)g(`)

(`− 1)(`2 − 1)`s

)
(7.10)

can be simplified to

H(s) =
∏
`|L

(
1− 1

`s+1

)−1∏
`-L

(
1 +O

(
1

`s+2

))
.

Thus, H(s) is absolutely convergent for Re(s) > −1. From the expression (7.9), we see that F (s)
can be analytically continued to Re(s) ≥ 0.

In particular, (7.9) gives us

F ′(s) = −ζ
′(s+ 1)

ζ(s+ 1)

1

ζ(s+ 1)
H(s) + ζ(s+ 1)−1H ′(s),

in the region Re(s) ≥ 0. As ζ(s) and − ζ′

ζ (s) have simple poles at s = 1 with residue 1, we find that

F ′(0) = H(0) =
∏
`|L

(
1− 1

`

)−1∏
`-L

(
1− 1

`

)−1(
1− (`2 − 2)g(`)

(`− 1)(`2 − 1)

)
, (7.11)

from (7.10). Using Theorem 7.1 of Newman, we see that the series representation

F ′(s) =
∑

(d,L)=1

µ(d)

δ(d)ds
g(d) log(1/d) (7.12)

for Re(s) > 0 must also hold for Re(s) ≥ 0, and the expressions (7.11) and (7.12) agree at s = 0. �

Lemma 7.4. Let t, L be fixed positive integers and ω be any arithmetical function. Then we have∑
d|L, e|L

µ(d)µ(e)

ω(t[d, e2])
=
∑
d|L

µ(d)

ω(td)
. (7.13)

Proof. Since d and e are squarefree, we have [d, e2] = d′e2, where d′ = d/r and r = (d, e). Note that
d′ is coprime to r and e. If we fix divisors d′ and e of L, with (d′, e) = 1, then r can range over any
divisor of e. Each such choice of r yields a unique d, given by d = d′r. The sum in question is thus
given by ∑

e|L

∑
d|L

µ(d)µ(e)

ω(t[d, e2])
=
∑
e|L

∑
d′|L

(d′,e)=1

µ(e)µ(d′)

ω(td′e2)

∑
r|e

µ(r).

The innermost sum is supported only on e = 1 by the fundamental property of the Möbius func-
tion, thus completing the proof. �

We will now use the above lemmas to complete our computation of the refined Koblitz constant
from certain sums involving the functions δ and ω given in (3.4). These sums will come up in a
natural way in subsections 8.1 and 8.2, and play an important role in the proof of Theorem 2.2.

Lemma 7.5. Let t be a fixed positive integer. Let L = L(E) be the integer appearing in Theorem 3.3. We
have ∑

(d,tL)=1

∑
(e,tL)=1

µ(d)µ(e) log
(
1
d

)
δ([d, e2])

=
∏
`|tL

(
1− 1

`

)−1∏
`-tL

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
. (7.14)
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Proof. We use the identity f([m,n])f((m,n)) = f(m)f(n), which holds for any multiplicative func-
tion f and m,n ∈ N (cf. Selberg [23]). Then the innermost sum above can be written as∑

(e,tL)=1

µ(e)δ((d, e))

δ(e2)δ(d)
.

The double sum over d and e in (7.14) is thus given by∑
(d,tL)=1

µ(d) log(1/d)

δ(d)
h(d), (7.15)

where

h(d) =
∑

(e,tL)=1

µ(e)δ((d, e))

δ(e2)
.

We write

h(d) =
∏
p-tL
p-d

(
1− 1

δ(p2)

)∏
p-tL
p|d

(
1− δ(p)

δ(p2)

)
=
∏
p-tL

(
1− 1

δ(p2)

)
g(d), (7.16)

where g(d) is a multiplicative function of d, given on primes `|d by

g(`) =

(
1− δ(`)

δ(`2)

)(
1− 1

δ(`2)

)−1
. (7.17)

Observe that g satisfies the hypothesis of Lemma 7.3 by invoking (3.5). Applying Lemma 7.3, and
using (7.16), we see that the sum (7.15) simplifies to∏

`|tL

(
1− 1

`

)−1∏
`-tL

(
1− 1

`

)−1(
1− 1

δ(`2)

)(
1− g(`)

δ(`)

)
.

Simplifying the above product using (7.17) and the expression (3.6) for δ,we see that (7.15) is given
by ∏

`|tL

(
1− 1

`

)−1∏
`-tL

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
as needed. �

Lemma 7.6. Let t be a fixed positive integer. Let L = L(E) be the integer appearing in Theorem 3.3. We
have ∑

d1|tL
e1|tL

µ(d1)µ(e1)

ω(t[d1, e21])

∑
(d2,tL)=1
(e2,tL)=1

µ(d2)µ(e2) log(1/d2)

δ([d2, e22])
= CE,t,

where the constant CE,t is as given by (2.8).

Proof. Using Lemma 7.4, we see that the sum over d1, e1 reduces to∑
r|tL

µ(r)

ω(tr)
. (7.18)

Using Lemma 7.5 for the sum over d2, e2, we obtain the required expression for our sum. �

We also have the following expression for CE,t in terms of another sum.
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Lemma 7.7. Let t be a fixed positive integer. Let L = L(E) be the integer appearing in Theorem 3.3. We
have ∑

e1|tL

µ(e1)

ω(te1)

∑
(e2,tL)=1

µ(e2) log(1/e2)

δ(e2)
= CE,t,

where CE,t is as defined in (2.8).

Proof. It is enough to show that∑
(e,tL)=1

µ(e) log(1/e)

δ(e)
=
∏
`|tL

(
1− 1

`

)−1∏
`-tL

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
. (7.19)

For the sum on the left hand side, we are in a position to apply Lemma 7.3 with g ≡ 1. This gives∑
(e,tL)=1

µ(e) log(1/e)

δ(e)
=
∏
`|tL

(
1− 1

`

)−1∏
`-tL

(
1− 1

`

)−1(
1− 1

δ(`)

)
,

which upon simplification using (3.5), yields (7.19). �

8. DECOMPOSITION OF Λ

Let t be a fixed positive integer. In this section, we want to estimate the number of primes p ≤ x
with p - NE , such that Npt is a prime. Consider the sum

SE,t(x) :=
∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

)
Λ

(
Np

t

)
. (8.1)

Note that Np ≤ x+ 2
√
x+ 1 by the Hasse bound. We find that

Λ

(
Np

t

)
= µ2

(
Np

t

)
Λ

(
Np

t

)
,

except when Np
t is a prime power. However on considering the sum∑

p≤x,α≥2,
Np
t =qα

q prime

Λ

(
Np

t

)
≤

∑
n≤x+2

√
x+1,

α≥2, nt =q
α

ME(n)Λ
(n
t

)
≤

∑
n≤x

2
3 ,

α≥2, nt =q
α

ME(n)Λ
(n
t

)
+

∑
x
2
3<n≤(

√
x+1)2,

α≥2, nt =q
α

ME(n)Λ
(n
t

)
,

by (2.7), we have ∑
n≤x

2
3 ,

α≥2, nt =q
α

ME(n)Λ
(n
t

)
= O(x

2
3 ).

We now observe there must exist a power of q, say qβq with βq ≥ 2, such that qβq | n and qβq ≥ x
2
3 /t

for all x
2
3 < n ≤ x+ 2

√
x+ 1 which are of the form tqα with α ≥ 2. This shows that∑

x
2
3<n≤(

√
x+1)2,

α≥2, nt =q
α

ME(n)Λ
(n
t

)
≤

∑
q≤
√
x+1

∑
x
2
3<n≤(

√
x+1)2,

qβq |n

ME(n)Λ
(n
t

)
.
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By Conjecture 4, it follows that

∑
q≤
√
x+1

∑
x
2
3<n≤(

√
x+1)2,

qβq |n

ME(n)Λ
(n
t

)
= O

log x
∑

q≤
√
x+1,

qβq>x
2
3
t

x(log x)C

qβq

 = Ot(x
5
6 (log x)C),

for some C > 0. This yields∑
p≤x
p-NE

Np≡0 (mod t)

Λ

(
Np

t

)
=

∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

)
Λ

(
Np

t

)
+Ot(x

5
6 (log x)C).

Thus it is enough to work with the sum (8.1).
Recall (cf. Ex 1.1.6, [16]) that

Λ(n) =
∑
d|n

µ(d) log(1/d).

For some fixed y > 0, we may write Λ(n) = Λy(n) + Λ̃y(n), where

Λy(n) :=
∑

d|n,d≤y

µ(d) log(1/d), Λ̃y(n) :=
∑

d|n,d>y

µ(d) log(1/d).

Applying this decomposition of Λ we break the sum SE,t(x) into two sub-sums S1,t(y) and S2,t(y),
where

S1,t(y) :=
∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

)∑
d|Np

t
d≤y

µ(d) log(1/d), (8.2)

and

S2,t(y) :=
∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

)∑
d|Np

t
d>y

µ(d) log(1/d). (8.3)

We treat the two sums above separately. Henceforth, we consider y = y(x) as a parameter which
will be chosen suitably later.

We have thus obtained, for some C > 0∑
p≤x
p-NE

Np≡0 (mod t)

Λ

(
Np

t

)
= S1,t(y) + S2,t(y) +O(x5/6(log x)C). (8.4)

In order to prove Theorem 2.2, we derive an asymptotic formula for S1,t(y) and show that the
main contribution to SE,t(x) comes from the sum S1,t(y).

8.1. Contribution from S1,t(y). We will first estimate S1,t(y) in terms of a sum involving the func-
tions ω and δ defined in (3.4).

Lemma 8.1. Let L = L(E) be the fixed positive integer appearing in Theorem 3.3. Let y = xθ for some
fixed 0 < θ < 1, andB > 0 be a suitably large absolute constant. Assume that Conjecture 4 and Conjecture
EHE,t

(
xθ(log x)B

)
are true. Then for any A > 0, we have

S1,t(y) = Li(x)
∑
d≤y

∞∑
e=1

µ(d)µ(e) log(1/d)

ω(t[d1, e21])δ([d2, e
2
2])

+OA

(
x

(log x)A

)
,
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where d = d1d2 is the unique factorization of d such that rad(d1)|tL, (d2, tL) = 1 and similarly for e.

Proof. After interchanging the order of summation in (8.2), we may rewrite S1,t(y) as

S1,t(y) :=
∑
d≤y

µ(d) log(1/d)
∑
p≤x
p-NE

Np≡0 (mod td)

µ2
(
Np

t

)
(8.5)

Note that if p|td, then the inner sum can contribute at most∑
p≤x
p|td

µ2
(
Np

t

)
�
∑
n|td

Λ(n)� log(td).

Therefore, the contribution to the sum (8.5) when (p, td) 6= 1 is � y(log y)2, which is negligible.
So, we may assume that (p, td) = 1. We now consider the sum∑

d≤y
µ(d) log(1/d)

∑
p≤x

p-tdNE
Np≡0 (mod td)

µ2
(
Np

t

)
.

The inner sum above is π∗E(x, d, t) as defined in (6.3). Under the assumption of Conjecture 4 and
Conjecture EHE,t

(
xθ(log x)B

)
, Theorem 6.1 gives

S1,t(y) = Li(x)
∑
d≤y

∞∑
e=1

µ(d)µ(e) log(1/d)

ω(t[d1, e21])δ([d2, e
2
2])

+ ∆1,t(y),

where

∆1,t(y) :=
∑
d≤y

µ(d) log(1/d)∆µ2(y, d, E, t)

� log y
∑
d≤y

µ2(d)|∆µ2(y, d, E, t)| � x

(log x)A
,

for any A > 0, using (6.4). This completes the proof. �

We are now left to study the sum in the main term

Mt(y) :=
∑
d≤y

∞∑
e=1

µ(d)µ(e) log(1/d)

ω(t[d1, e21])δ([d2, e
2
2])
, (8.6)

as y →∞. Writing log(1/d) as log(1/d1) + log(1/d2), we have

Mt(y) = M1,t(y) +M2,t(y),

where

M1,t(y) :=
∑
d1|tL
e1|tL

µ(d1)µ(e1) log(1/d1)

ω
(
t[d1, e21]

) ∑
(e2,tL)=1

∑
d2≤ y

d1
(d2,tL)=1

µ(d2)µ(e2)

δ([d2, e22])
(8.7)

and

M2,t(y) :=
∑
d1|tL
e1|tL

µ(d1)µ(e1)

ω
(
t[d1, e21]

) ∑
(e2,tL)=1

∑
d2≤ y

d1
(d2,tL)=1

µ(d2)µ(e2)

δ([d2, e22])
log(1/d2). (8.8)

The following two propositions summarize the contribution of each of the above components of
the main term.
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Proposition 8.2. Let L = L(E) be the positive integer given in Theorem 3.3. As y →∞, we have

M1,t(y)�t,L e
−c
√
log y,

for some absolute c > 0.

Proof. Consider the double sum ∑
(e,tL)=1

∑
d≤y

(d, tL)=1

µ(d)µ(e)

δ ([d, e2])
(8.9)

Since d, e are squarefree, putting r = (d, e), we see that [d, e2] = d′e2, where d′ = d/r. Given any e
coprime to tL, r can range over all divisors of e. Thus, (8.9) equals∑

(e,tL)=1

µ(e)

δ(e2)

∑
r|e

µ(r)
∑
d′≤y/r

(d′, ertL)=1

µ(d′)

δ(d′)
� e−c1

√
log y

∑
(e,tL)=1

µ2(e)

δ(e2)

∑
r|e

µ2(r)

for some constant c1 > 0, using Lemma 7.2. Since∑
(e,tL)=1

µ2(e)τ(e)

δ(e2)

is absolutely convergent using Lemma 3.4, the sum in (8.9) is� exp(−c
√

log y) for some c > 0.
The inner double sum ofM1,t(y) in (8.7) is precisely (8.9) with y/d1 instead of y.Hence, for some

c > 0,

M1,t(y) � e−c
√
log y

∑
d1, e1|tL

µ2(d1)µ
2(e1) log(d1)

|ω(t[d1, e21])|
� e−c

√
log y log(tL)τ(tL)2,

which completes the proof. �

Proposition 8.3. We have, as y →∞,

M2,t(y) = (1 + o(1))CE,t,

where CE,t is the constant defined in (2.8).

Proof. This follows immediately from Lemma 7.6. �

We obtain the following asymptotic formula for S1,t(y).

Lemma 8.4. Let y = xθ for a fixed 0 < θ < 1, and B > 0 be a suitably large absolute constant. Assume
that Conjecture 4 and Conjecture EHE,t

(
xθ(log x)B

)
are true. Then as x→∞, we have

S1,t(y) = (1 + o(1))CE,t Li(x),

where CE,t is as defined in (2.8).

Proof. The result follows upon putting together Lemma 8.1, (8.6), and Propositions 8.2 and 8.3. �

8.2. Contribution from S2,t(y): We recall from (8.3) that

S2,t(y) :=
∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

)∑
d|Np

t
d>y

µ(d) log(1/d).
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Let Npt = de. Since p ≤ x, the Hasse bound gives dte ≤ x+1+2
√
x.We write the sum over divisors

e of Np/t, instead of d, to get

S2,t(y) =
∑
p≤x
p-NE

Np≡0 (mod t)

µ2
(
Np

t

) ∑
e|Np

t

e≤ (x+1+2
√
x)

yt

µ

(
Np

et

)
log

(
et

Np

)
.

Since Np
t is squarefree in the above sum, we may write µ

(
Np
et

)
= µ

(
Np
t

)
µ(e). Therefore,

S2,t(y) =
∑
p≤x
p-NE

Np≡0 (mod t)

∑
e|Np

t

e≤ (x+1+2
√
x)

yt

µ

(
Np

t

)
µ(e) log

(
et

Np

)
.

Using this we rewrite

S2,t(y) = S
(1)
2,t (y)− S(2)

2,t (y),

where,

S
(1)
2,t (y) :=

∑
p≤x
p-NE

Np≡0 (mod t)

∑
e|Np

t

e≤ (x+1+2
√
x)

yt

µ

(
Np

t

)
µ(e) log e (8.10)

and,

S
(2)
2,t (y) :=

∑
p≤x
p-NE

Np≡0 (mod t)

∑
e|Np

t

e≤ (x+1+2
√
x)

yt

µ(e)µ

(
Np

t

)
log

(
Np

t

)
(8.11)

We evaluate S(1)
2,t (y) and S(2)

2,t (y) in the following propositions.

Proposition 8.5. Let y = xθ for some fixed 0 < θ < 1. Assume Conjecture EHE,t,µ(x1−θ)holds. Then for
any A > 0, we have

S
(1)
2,t (y) = (−CE,t + o(1))

∑
p≤x
p-NE

µ

(
Np

t

)
+O

(
x

(log x)A

)
,

where CE,t is as defined in (2.8).

Proof. After interchanging the order of summation, we rewrite the sum in (8.10) as

S
(1)
2,t (y) =

∑
e≤ (x+1+2

√
x)

yt

µ(e) log(e)
∑
p≤x
p-NE

Np≡0 (mod et)

µ

(
Np

t

)

Note that the contribution to the sum (8.5) when p|et is� x1−θ(log x)2, which is negligible. Hence
we may assume that (p, et) = 1 and consider the sum∑

e≤ (x+1+2
√
x)

yt

µ(e) log(e)
∑
p≤x
p-etNE

Np≡0 (mod et)

µ

(
Np

t

)
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Let e = e1e2 be the unique factorization of e such that rad(e1)|tL, and (e2, tL) = 1. Using Conjec-
ture EHE,t,µ(x1−θ) in the above expression, we have

S
(1)
2,t (y) =

∑
e1|tL

∑
e2≤

(x+1+2
√
x)

yte1

µ(e1)µ(e2)

ω(te1)δ(e2)
log(e1e2)

∑
p≤x
p-NE

µ

(
Np

t

)
+O

(
x

(log x)A

)
, (8.12)

for any A > 0. The double sum over e1 and e2 is independent of the sum over primes p above. We
observe that ∑

e1|tL

µ(e1)

ω(te1)
log(e1)

∑
e2≤

(x+1+2
√
x)

yte1

µ(e2)

δ(e2)
�t,L e−c

√
log x,

using Lemma 7.2. From this and Lemma 7.7, we see that the aforementioned double sum in (8.12)
equals

−(1 + o(1))CE,t +O
(

exp(−c
√

log x)
)
.

Putting this into (8.12) completes the proof. �

In order to show that S(2)
2,t (y) is negligible, we need the following logarithmically weighted

version of EHE,t,µ

(
xθ
)
.

Proposition 8.6. Assume that Conjecture EHE,t,µ(xθ) holds. Let

∆̃E,µ(x, e, t) :=
∑

p≤x, p-teNE
Np≡0 (mod te)

µ

(
Np

t

)
log

(
Np

t

)
− 1

ω(te1)δ(e2)

∑
p≤x
p-NE

µ

(
Np

t

)
log

(
Np

t

)
, (8.13)

where e = e1e2 is the unique factorization of e such that rad(e1)|L, and (e2, tL) = 1. Then given any
A > 0, there exists B = B(A) > 0 such that∑

e≤ xθ
′

(log x)B

|∆̃E,µ(x, e, t)| �A
x

(log x)A
,

for any θ′ ≤ min {θ, 1/2} .

Proof. We will rephrase Conjecture EHE,t,µ(xθ) using an indicator function which detects integers
(with multiplicity) of the form Np

t for some prime p - etNE . More precisely, we define

1E,t(n) := #{p - etNE : Np/t = n}. (8.14)

Let us define the function b(y) = y + 2
√
y + 1. Then for any y sufficiently large, we have

∑
n≤ b(y)

t
n≡0 (mod e)

µ(n)1E,t(n) =
∑

p≤y, p-teNE
Np≡0 (mod te)

µ

(
Np

t

)
+O(

√
y), (8.15)

where the O-term takes into account the possible contribution from Np’ s with p lying in the in-
terval (y, y + 4

√
y + 4], to the sum on the left hand side of (8.15). By (2.6), we have that (8.15)
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equals

1

ω(te1)δ(e2)

∑
p≤y
p-NE

µ

(
Np

t

)
+O(

√
y) + ∆E,µ(y, e, t)

=
1

ω(te1)δ(e2)

∑
p≤y
p-etNE

µ

(
Np

t

)
+O(

√
y) + ∆E,µ(y, e, t) +O

(
1

δ(e2)

∑
p|et

1

)
.

Using (8.14) again, we obtain that Conjecture EHE,t,µ(xθ) can be formulated as follows:∑
n≤ b(y)

t
n≡0 (mod e)

µ(n)1E,t(n) =
1

ω(te1)δ(e2)

∑
n≤ b(y)

t

µ(n)1E,t(n) + ∆E,µ(y, e, t) +O(
√
y). (8.16)

We now apply partial summation to the sum∑
n≤ b(x)

t
n≡0 (mod e)

µ(n)1E,t(n) log n,

to get

( ∑
n≤ b(x)

t
n≡0 (mod e)

µ(n)1E,t(n)

)
log(b(x)/t)−

b(x)/t∫
1

( ∑
n≤u

n≡0 (mod e)

µ(n)1E,t(n)

)
1

u
du

=
1

ω(te1)δ(e2)

( ∑
n≤ b(x)

t

µ(n)1E,t(n)

)
log(b(x)/t)−

b(x)/t∫
1

(∑
n≤u

µ(n)1E,t(n)

)
1

u
du


+Ot(

√
x log x) +

(
max
y≤x
|∆E,µ(y, e, t)| log x

)
,

where the last expression follows from (8.16). Notice that the expression inside the square brackets
is exactly what one would obtain on applying partial summation to∑

n≤ b(x)
t

µ(n)1E,t(n) log n.

Hence, we have∑
n≤ b(x)

t
n≡0 (mod e)

µ(n)1E,t(n) log n =
1

ω(te1)δ(e2)

∑
n≤ b(x)

t

µ(n)1E,t(n) log(n) + ∆′E,µ(x, e, t), (8.17)

where
∆′E,µ(x, e, t) := max

y≤x
|∆E,µ(y, e, t)| log x+Ot(

√
x log x). (8.18)

Making the transition from sums over n to those over primes p using (8.14), we have∑
p≤x, p-teNE
Np≡0 (mod te)

µ

(
Np

t

)
log

(
Np

t

)
=

1

ω(te1)δ(e2)

∑
p≤x, p-NE

µ

(
Np

t

)
log

(
Np

t

)
+ ∆̃E,µ(x, e, t),
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where

∆̃E,µ(x, e, t) = ∆′E,µ(x, e, t) +O

(
1

δ(e2)

∑
p|et

log x

)
.

Since the last term above is� 1, (8.18) yields the desired bound on ∆̃E,µ(x, e, t). �

This result allows us to bound S(2)
2,t (y) as follows.

Proposition 8.7. Suppose that Conjecture EHE,t,µ(x1−θ) holds for some θ ≥ 1/2. Then given A > 0,
there exists B = B(A) > 0, such that

S
(2)
2,t (xθ(log x)B)�A

x

(log x)A
.

Proof. Let y = xθ(log x)B(A). Recall from (8.11) that

S
(2)
2,t (y) :=

∑
e≤ (x+1+2

√
x)

yt

µ(e)
∑

p≤x, p-NE
Np≡0 (mod te)

µ

(
Np

t

)
log

(
Np

t

)
.

As in Proposition 8.5, the contribution to the above sum when p|te is � x1−θ(log x)2, which is
negligible and we will be considering∑

e≤ (x+1+2
√
x)

yt

µ(e)
∑

p≤x, p-teNE
Np≡0 (mod te)

µ

(
Np

t

)
log

(
Np

t

)
.

From Proposition 8.6 , we get

S
(2)
2,t (y) =

∑
e≤ (x+1+2

√
x)

yt

µ(e)

ω(te1)δ(e2)

∑
p≤x
p-NE

µ

(
Np

t

)
log

(
Np

t

)
+O

(
x

(log x)A

)

=
∑
e1|tL

µ(e1)

ω(te1)

∑
e2≤

(x+1+2
√
x)

yte1

µ(e2)

δ(e2)

∑
p≤x
p-NE

µ

(
Np

t

)
log

(
Np

t

)
+O

(
x

(log x)A

)
.

A crucial observation at this point is that the sums over e1, e2 and p in the main term are indepen-
dent of each other. The sum over p is trivially bounded by x log x and we bound the former sums
using Lemma 7.2 to get∑

e1|tL

µ(e1)

ω(te1)

∑
e2≤

(x+1+2
√
x)

yte1

µ(e2)

δ(e2)
� τ(tL) exp(−c

√
log x),

for some c > 0. This completes the proof. �

From Propositions 8.5 and 8.7, we have obtained the following estimate for S2,t(y).

Lemma 8.8. Suppose that Conjecture EHE,t,µ(x1−θ) holds for some θ ≥ 1/2. Given A > 0, there exists
B = B(A) > 0 such that

S2,t(x
θ(log x)B) = (−CE,t + o(1))

∑
p≤x
p-NE

µ

(
Np

t

)
+O

(
x

(log x)A

)
,

where CE,t is the constant defined in (2.8).
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9. PROOF OF THE THEOREM 2.2

Let B = B(A) as in Lemma 8.8. Choosing y = xθ(log x)B for some fixed 1/2 ≤ θ < 1, we first
note that Lemma 8.4 holds with this choice of y as well, provided we assume EHE,t(y(log x)C), for
some sufficiently large C.

Using (8.4), and Lemmas 8.4, 8.8, we obtain∑
p≤x
p-NE

Np≡0 (mod t)

Λ

(
Np

t

)
= (CE,t + o(1)) Li(x) + (−CE,t + o(1))

∑
p≤x, p-NE

Np≡0 (mod t)

µ

(
Np

t

)

= CE,t

(
Li(x)−

∑
p≤x, p-NE

µ

(
Np

t

))
+ o(Li(x)), (9.1)

under the conjectures EHE,t(x
θ(log x)C), EHE,t,µ(x1−θ) and Conjecture 4, for C sufficiently large.

Here CE,t is as in (2.8). This shows that (2.2) and (2.3) are equivalent to each other.
From (9.1), part b) of the result follows if we have∣∣∣∣ ∑

p≤x, p-NE

µ

(
Np

t

) ∣∣∣∣ ≤ AE,L Li(x) + o(Li(x)). (9.2)

We prove this as follows.∣∣∣∣ ∑
p≤x, p-NE

µ

(
Np

t

) ∣∣∣∣ ≤ ∑
p≤x, p-NE

Np is squarefree

1

=
∑
p≤x
p-NE

1−
∑

p≤x, p-NE
Np is divisible by a square

1.

Take ` to be the smallest prime coprime to L. Then the right hand side above is

≤ (1 + o(1)) Li(x)−
∑

p≤x, p-NE
Np≡0 (mod `2)

1.

Using (3.9), we have for any A > 0,∑
p≤x, p-NE

Np≡0 (mod `2)

1 =
1

δ(`2)
Li(x) +OA

(
`6

x

(log x)A

)
.

Therefore,∣∣∣∣ ∑
p≤x, p-NE

Np≡0 (mod t)

µ

(
Np

t

) ∣∣∣∣ ≤ Li(x)

(
1− 1

δ(`2)

)
+OA

(
`6

x

(log x)A

)
+ o(Li(x)).

Since AE,L =
(

1− 1
δ(`2)

)
, this completes the proof of part b) of the result.
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