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ABSTRACT. In this article, we prove a fully explicit generalized Brun-Titchmarsh theorem for an

imaginary quadratic field K. More precisely, for any finite family of linearly independent linear

forms with coefficients in OK, we count the number of integers at which all these linear forms

take prime values in OK.
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1. INTRODUCTION AND STATEMENT OF THE THEOREM12

Throughout this article, K will denote an imaginary quadratic field with discriminant dK,13

hK the class number of OK and |µK| the number of roots of unity in OK. We will denote by ζK14

the Dedekind zeta function of K and its residue at s “ 1 by αK. Further we use PK to denote15

the set of prime ideals of OK and Q to denote the set of all prime elements of OK. We will16

denote by ωKpbq the number of distinct prime ideals of OK which appear in the factorization17

of the ideal b in OK and by πKpxq the number of prime ideals of OK with norm at most x.18

The aim of this article is to prove a fully explicit generalisation of the Brun-Titchmarsh theorem19

for several linear forms taking values in Q. This is a natural generalisation of the problem of20

finding an upper bound for the number of prime values that can be taken by a set of n linear21

forms simultaneously. This question has been addressed in considerable detail in literature.22
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The study of such generalisations finds its origin in the twin prime and prime k-tuple con-1

jectures. However the problem has been placed in the more general context of linear forms by2

Dickson’s conjecture [5] which states the following.3

Conjecture 1 (Dickson’s conjecture [5]). Given a set of n distinct irreducible linear polynomials4

F1, . . . , Fn P Zrxs with positive leading coefficient, suppose that the product
śn

i“1 Fipxq has no fixed5

prime divisor. Then the polynomials Fipxq simultaneously take prime values infinitely often.6

A quantitative version of Dickson’s conjecture was given by Batemann and Horn [1, 2] in7

1962. The precise form of the Bateman-Horn conjecture is as follows.8

Conjecture 2 (Bateman-Horn conjecture [1, 2]). Given a set of n distinct irreducible linear polyno-
mials F1, . . . Fn P Zrxs with positive leading coefficient, and suppose that the product

śn
i“1 Fipxq has

no fixed prime divisor. Then

ÿ

1ďkďx
Fipkq is prime @i

1 “
ź

p

#

ˆ

1 ´
1

p

˙´nˆ

1 ´
ρppq

p

˙

+

¨

ż x

2

dt

logn t
p1 ` op1qq

as x Ñ 8. Here ρppq is the number of solutions of
śn

i“1 Fipxq ” 0 mod p.9

The only case in which these conjectures have been resolved is in the case of a single linear10

polynomial which is nothing but the prime number theorem for primes in arithmetic progres-11

sions. For every other case finding even a lower bound in place of the asymptotic is notoriously1

difficult. However upper bounds close to the one suggested by the asymptotic are known us-2

ing Selberg sieve techniques. For instance, one may find the following theorem in [9] (pages3

157-159).4

Theorem 1. Given distinct irreducible linear polynomials F1, . . . , Fn P Zrxs with positive leading
coefficients, let F pxq “

śn
i“1 Fipxq. Further let ρppq be the number of solutions modulo p of F pxq. If

ρppq ă p for all primes p,

ÿ

1ďkďx
Fipkq is prime @i

1 ď
ź

p

#

ˆ

1 ´
1

p

˙´nˆ

1 ´
ρppq

p

˙

+

2nn!x

logn x

ˆ

1 ` OF

ˆ

log log 3x

log x

˙˙

.

In this article, we show that an analogous bound can be obtained if we consider prime5

elements in an imaginary quadratic field instead of the rationals. Further our bounds are fully6

explicit. We present an application of such a bound in [10]. On the other hand this paper itself7

demonstrates an application of the main theorems of [8].8

Theorem 2. Let u be a positive real number, n ą 1 be an integer and ai P OKzt0u’s for 1 ď i ď n be
distinct. Assume that paiOK, biOKq “ OK for 1 ď i ď n, paiOK : 1 ď i ď nq “ OK and

E “

n
ź

i“1

ai
ź

1ďiăjďn

paibj ´ ajbiq ‰ 0.
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Further assume that for any prime ideal p of OK, ρppq is the number of solutions of
n
ź

i“1

paix` biq ” 0 mod p

and Q denotes the set of prime elements of OK. Then for u ě rUpK, a1b1qs4, we have

ÿ

Npαqďu
@i,bi`aiαPQ

1 ď
5n! |µK|

2αn´1
K hK

¨ S ¨
u

plogCu
1
4 qn

,

where

UpK, a1b1q “
expp18pn` 1qLq

C
, C “

n!π

323n3n17nNpa1b1qαn
K

a

|dK|
,

L “ 4nωKppEqq ` 4nωKp
ź

Npďn

pq ` 20n3 ` n
e76|dK|1{3plog |dK|q2

αK
,

and

S “

˜

ź

Npďn

Np

Np ´ 1

¸n
ź

Npąn

ˆ

1 ´
ρppq

Np

˙ˆ

1 ´
1

Np

˙´n

.

The paper is organized as follows. In section 2, we will state some notations and prelimi-9

naries required for the proof of our main theorem. In the same section, we will also recall the10

results used from [8]. In section 3, we will prove some auxiliary lemmas and finally we will use11

them in section 4 to prove our theorem.12

2. NOTATION AND PRELIMINARIES13

Let K be an imaginary quadratic field and OK be its ring of integers. For an ideal q P OK,14

let HqpKq denote the ray class group modulo q and hK,q denote its cardinality. When q “ OK,15

the ray class group modulo OK is ClK. In this case, we denote hK,OK
by hK. Throughout the16

article, N will denote the (absolute) norm, p will denote a prime ideal in OK and pwill denote a1

rational prime number. Further we use φpqq to denote the Euler-phi function as defined below2

(1) φpqq “ Npqq
ź

p|q

ˆ

1 ´
1

Nppq

˙

.

For any embedding σ of K, the Minkowski embeddingψ of K to R2 maps x to ℜpσpxqq,ℑpσpxqqq.3

Let us begin with a counting theorem proved in [8].4

Theorem 3. (Gun, Ramaré and Sivaraman) Let a, q be co-prime ideals of OK, C be the ideal class of
aq in the class group of OK and Λpaqq be the lattice ψpaqq in R2, where ψ is as defined above. Also let

Sβ
`

a, q, t2
˘

“ tα P a : |ψpαq|2 ď t2, α ” β mod qu
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for some fix β P OK. Then for any real number t ě 1, we have5

(2)
ˇ

ˇSβ
`

a, q, t2
˘
ˇ

ˇ “
p2πq

a

|dK| Npaqq
t2 ` O˚

˜

1013.66NpC´1q

|Npaqq|
1
2

t ` 1

¸

,

where

NpC´1q “ maxbPC´1

1

|Npbq|
1
2

.

One can ignore 1 in the error term when q “ OK.6

For an arithmetic function f and a positive arithmetic function g, fpzq “ O˚pgpzqq implies7

that |fpzq| ď gpzq.8

The Dedekind zeta-function. For ℜs “ σ ą 1, the Dedekind zeta-function is defined by

ζKpsq “
ÿ

aĎOK

1

Npaqs
,

where a ranges over the integral ideals of OK. It has only a simple pole at s “ 1 of residue αK,9

say. When K is an imaginary quadratic field, we know from the analytic class number formula1

that2

(3) αK “
2πhK

|µK|
a

|dK|
,

where hK, dK and |µK| are as before. We now quote a result from [4] which will be used to3

prove our theorem.4

Lemma 4. (Deshouillers, Gun, Ramaré and Sivaraman) If αK is the residue at s “ 1 of the Dedekind
zeta function of K, then we have

36

100
a

|dK|
ď αK ď 6p2π2{5q2|dK|1{4.

The next lemma is a result from [3] and is used to estimate the error term in Theorem 3.5

Lemma 5. (Debaene) Let b1, b2, ¨ ¨ ¨ be integral ideals of OK, ordered such that Npb1q ď Npb2q ¨ ¨ ¨ .
Then for any real number y ě 2

y
ÿ

i“1

Npbiq
´ 1

2 ď 12y
1
2 plog yq

1
2 .

Finally we recall two estimates which will be used in due course of our proof.6

Lemma 6. (Debaene [3]) For any real number y ě 16, we have
ÿ

pďy

1

p
ď 0.666 ` log log y.
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Lemma 7. (Rosser and Schoenfeld [12]) For any real number y ě 1, we have
ÿ

pďy

1

p
ě log log y.

2.1. Counting the total number of ideals. Applying Lemma 5, we derive the following corol-7

lary from Theorem 3.8

Corollary 8. Let K be an imaginary quadratic field. For any real number x ě 1, we have
ÿ

aĂOK,
Naďx

1 “ αKx ` O˚

ˆ

1015phK logp3hKqq
1
2x

1
2

˙

.

Proof. For any class rCs in the class group ClK of OK, choose an integral ideal bC P rC´1s. From9

Theorem 3, we have10

ÿ

aĂOK,
Naďx

1 “
ÿ

CPClK

ÿ

aPrCsXOK,
Naďx

1 “
ÿ

CPClK

1

|µK|

ˇ

ˇ

␣

α P bC : |ϕpαq|2 ď xNbC
(
ˇ

ˇ

“
2πhKx

|µK|
a

|dK|
` O˚

˜

1013.66
?
x

ÿ

CPClK

NpC´1q

¸

.

To majorize
ř

CPClK
NpC´1q, we apply Lemma 5 with y “ 3hK. This completes the proof of11

Corollary 8. □12

3. SOME INTERMEDIATE LEMMAS1

3.1. Selberg sieve. Let n be an integer greater than or equal to 2, aix ` bi for 1 ď i ď n be n
distinct linear forms with ai, bi P OKzt0u, paiOK, biOKq “ OK and paiOK : 1 ď i ď nq “ OK.
We further assume that

E “

n
ź

i“1

ai
ź

1ďiăjďn

paibj ´ ajbiq and H “
ź

Npďn

p.

For an integral ideal b, let ρpbq denote the number of solutions of

F pxq “

n
ź

i“1

paix` biq ” 0 mod b.

Applying Chinese remainder theorem, it follows that ρpbq is a multiplicative function. Further,2

we observe that for any prime p, ρppq ă Np when Np ą n. Let us define the multiplicative3

functions4

(4) fpbq “
Nb

ρpbq
and f1pbq “

ÿ

a|b
aĎOK

µpaqf

ˆ

b

a

˙

.



6 SANOLI GUN, OLIVIER RAMARÉ AND JYOTHSNAA SIVARAMAN

We may assume that ρppq ă Np when Np ď z since otherwise no prime of norm greater than5

z is to be counted in our sum. Hence f1 ą 0 on the set of non zero square free integral ideals6

co-prime to H . Also fpOKq “ 1. Further, for an ideal e of OK co-prime to H , we define7

PKpzq “
ź

năNpďz

p, Sepzq “
ÿ

Npaqďz,
pa, eHq“OK

µ2paq

f1paq
, Gpzq “ SOK

pzq and λe “ µpeq
fpeqSep

z
Npeq q

f1peqGpzq
.

Proposition 9. For any ideal b | PKpzq, we have |λb| ď 1.8

Proof. For an integral ideal b dividing PKpzq, we have1

SOK
pzq “

ÿ

c|b

µ2pcq

f1pcq

ÿ

Npaqď z
Npcq

pa,bHq“OK
aĎOK

µ2paq

f1paq
ě

ÿ

c|b

µ2pcq

f1pcq

ÿ

Npaqď z
Npbq

pa,bHq“OK
aĎOK

µ2paq

f1paq

“ Sb

ˆ

z

Npbq

˙

ÿ

c|b

µ2pcq

f1pcq
“

fpbq

f1pbq
Sb

ˆ

z

Npbq

˙

.

The last step follows from the fact that b is square-free and co-prime to H . To see this, note that

ÿ

a|b

µ2paq

f1paq
“

ź

p|b

ˆ

1 `
1

f1ppq

˙

“

ř

a|b f1paq

f1pbq
“

fpbq

f1pbq
.

This completes the proof of the lemma. □1

We now recall a special case of a result of Garcia and Lee [7] .2

Theorem 10. Let K be an imaginary quadratic field and x ě 2. We have

ÿ

Npďx

logNp

Np
“ log x ` O˚

˜

3 `
e75|dK|1{3plog |dK|q2

αK

¸

.

Using the above theorem, we can now prove the following asymptotic.3

Lemma 11. Let x ě 2 be a real number. The sum

ÿ

năNpďx

ρppq logNp

Np
“ n log x` O˚

˜

n

˜

ωKpEq ` ωKpHq ` 3 `
e75|dK|1{3plog |dK|q2

αK

¸¸

.

Proof. It follows from the definition of ρ,H and E that
ÿ

năNpďx

ρppq logNp

Np
“

ÿ

Npďx

n logNp

Np
` O˚pnpωKpEq ` ωKpHqqq,

where ωKpEq denotes the number of distinct prime ideals of K dividing the ideal pEq in K.1

Thus we have the lemma.2

□1
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3.1.1. An estimate to control the error term.2

Lemma 12. We have

ÿ

b1,b2|PKpzq,
Nbiďz

|λb1λb2 |
ρprb1, b2sq

a

Nprb1, b2sq
ď p3nq4πKp2nqζK

ˆ

3

2

˙8n

z.

Proof. We consider the sum

ÿ

b1,b2|PKpzq,
Nbiďz

|λb1λb2 |
ρprb1, b2sq

a

Nprb1, b2sq
“

ÿ

B|PKpzq,
NBďz

?
NB

ρpBq

ÿ

bi|PKpzq,

B“pb1,b2q

Nbiďz

|λb1λb2 |ρpb1qρpb2q
a

Npb1b2q
.

From the expression of λb and with y “ z{NB, we get

ÿ

Ncďy,
pc,BHq“1

|λBc|ρpcq
?
Nc

“ Gpzq´1
ÿ

Ncďy,
pc,BHq“OK

µ2pcq

?
NcNB

ρpBqf1pcBq

ÿ

Nmďy{Npcq,
pm,cBHq“OK

µ2pmq

f1pmq

ď
NB

GpzqρpBqf1pBq

ÿ

Nmďy
pm,Hq“OK

µ2pmq

f1pmq

ÿ

Ncďy{Nm
pc,Hq“OK

µ2pcq
?
Nc

f1pcq
.

ď

?
y NB

GpzqρpBqf1pBq

ÿ

Nmďy
pm,Hq“OK

µ2pmq

f1pmq
?
Nm

Gpyq ď

?
y NB

ρpBqf1pBq

ź

Npąn

ˆ

1 `
ρppq

?
NppNp ´ ρppqq

˙

.

We thus get

ÿ

b1,b2|PKpzq,
Nbiďz

|λb1λb2 |
ρprb1, b2sq

a

Nprb1, b2sq
ď

ÿ

B|PKpzq

NBďz

ρpBq
?
NB

ˆ

?
z NB

ρpBqf1pBq

ź

Npąn

ˆ

1 `
ρppq

?
NppNp ´ ρppqq

˙˙2

ď z
ź

Npąn

ˆ

1 `
ρppq

?
NppNp ´ ρppqq

˙2ˆ

1 `
ρppq

?
Np

pNp ´ ρppqq2

˙

Note that

ź

Npąn

ˆ

1 `
ρppq

?
NppNp ´ ρppqq

˙

ď p2nqπKp2nq
ź

p
Npą2n

˜

1 `
2n

Np
3
2

¸

ď p2nqπKp2nqζK

ˆ

3

2

˙2n

.

Similarly

ź

Npąn

ˆ

1 `
ρppq

?
Np

pNp ´ ρppqq2

˙

ď
ź

năNpď2n

p1` n
a

Npq
ź

Npą2n

˜

1 `
4n

Np
3
2

¸

ď p3nq
3πKp2nq

2 ζK

ˆ

3

2

˙4n

.

This completes the proof of the lemma. □3
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3.1.2. Estimating G(z). We redo the proof of Fainleib-Levin [6] as described in Halberstam-
Richert [9] in the number field setting with the additional condition B|PKpzq. It can also be
done using the methods of Theorem 13.3 of [11]. Let

Gpx, zq “
ÿ

B|PKpzq

NBďx

µ2pBq

f1pBq
and Gppx, zq “

ÿ

B|PKpzq

NBďx
pB,pq“OK

µ2pBq

f1pBq
.

Lemma 13. We have
ˆ

1 ´
ρppq

Np

˙

Gp

ˆ

x

Np
, z

˙

“

ˆ

1 ´
ρppq

Np

˙

G

ˆ

x

Np
, z

˙

´
ρppq

Np
Gp

ˆ

x

Np2
, z

˙

.

Proof. For an integral ideal B co-prime to H , let hpBq “
µ2pBq

f1pBq
. The function h is multiplicative.

From the definition of Gpx, zq, we have

Gpx, zq “
ÿ

B|PKpzq

NBďx

hpBq “
ÿ

B|PKpzq

NBďx
pB,pq“OK

hpBq ` hppq
ÿ

B|PKpzq

NBď x
Np

pB,pq“OK

hpBq.

Multiplying both sides with p1 ´
ρppq

Np q, we get
ˆ

1 ´
ρppq

Np

˙

G px, zq “

ˆ

1 ´
ρppq

Np

˙

Gp px, zq `

ˆ

1 ´
ρppq

Np

˙

hppqGp

ˆ

x

Np
, z

˙

.

However we note that4

(5)
ˆ

1 ´
ρppq

Np

˙

hppq “

ˆ

1 ´
ρppq

Np

˙

1

f1ppq
“

ˆ

1 ´
ρppq

Np

˙

1

fppq ´ 1
“

1

fppq
.

This now gives us
ˆ

1 ´
ρppq

Np

˙

Gpx, zq “

ˆ

1 ´
ρppq

Np

˙

Gp px, zq `
1

fppq
Gp

ˆ

x

Np
, z

˙

.

Replacing x by x
Np in Gpx, zq, we get

ˆ

1 ´
ρppq

Np

˙

G

ˆ

x

Np
, z

˙

“

ˆ

1 ´
ρppq

Np

˙

Gp

ˆ

x

Np
, z

˙

`
1

fppq
Gp

ˆ

x

Np2
, z

˙

.

Thus we have the lemma. □1

Lemma 14. For an integral ideal B and real number x ą NB we have
ÿ

?
x
NB

ăNpď x
NB

,

p∤B

hppq ď npπKp2nq ` 9q,

where πKpxq denotes the number of prime ideals of OK with norm at most x.2
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Proof. We have
ÿ

?
x
NB

ăNpď x
NB

,

p∤BH

hppq ď
ÿ

?
x
NB

ăNpď x
NB

,

p∤BH

n

Np ´ ρppq
ď

ÿ

Npă2n
p∤H

n

Np ´ ρppq
`

ÿ

?
x
NB

ăNpď x
NB

,

p∤B

2n

Np
.

This gives us
ÿ

?
x
NB

ăNpď x
NB

,

p∤BH

hppq ď nπKp2nq ` 2
ÿ

?
x
NB

ăpď x
NB

2n

p
`

ÿ

pď
?

x
NB

2n

p2
.

Note that
ÿ

?
x
NB

ăpď x
NB

2n

p
“

ÿ

pď x
NB

2n

p
´

ÿ

pď
?

x
NB

2n

p
.

The first sum is estimated using a result of Debaene [3] (see Lemma 6) and the second using a
result of Rosser and Schoenfeld [12] (see Lemma 7). This gives us for x ě 16NB,

ÿ

pď x
NB

2n

p
´

ÿ

pď
?

x
NB

2n

p
ď 2n

ˆ

0.666 ` log log
x

NB
´ log log

c

x

NB

˙

ď 2n p0.666 ` log 2q ď 2.8n.

If x ă 16NB
ÿ

pď x
NB

2n

p
´

ÿ

pď
?

x
NB

2n

p
ď

ÿ

pă16

2n

p
ď 2.7n.

□3

Let

T px, zq “

ż x

1
Gpt, zq

dt

t
.

It follows from the definition of Gpt, zq that

T px, zq “

ż x

1

ÿ

NBďt,
B|PKpzq

hpBq
dt

t
“

ÿ

NBďx,
B|PKpzq

hpBq

ż x

NB

dt

t
“

ÿ

NBďx,
B|PKpzq

hpBq log
x

NB
.

Lemma 15. Let z ě 1 be a real number. The sum4

ÿ

NBďx
B|PKpzq

hpBq logNB “ nT px, zq ´ nT
´x

z
, z
¯

` O˚

˜˜

ωKpEq ` ωKpHq ` 10n2 `
e75|dK|1{3plog |dK|q2

αK

¸

nGpx, zq

¸

.

Proof. We have

S “
ÿ

NBďx,
B|PKpzq

hpBq
ÿ

p|B

logNp “
ÿ

năNpďz

hppq logNp
ÿ

Nmď x
Np

m|PKpzq,
pm,pq“OK

hpmq “
ÿ

năNpďz

hppqGp

ˆ

x

Np
, z

˙

logNp.
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Applying Lemma 13 and using (5), we get

S “
ÿ

năNpďz

ρppq logNp

Np
G

ˆ

x

Np
, z

˙

`
ÿ

năNpďz

ρppqhppq

Np
logNp

ÿ

x
Np2

ăNmď x
Np

m|PKpzq,
pm,pq“OK

hpmq.

Using the definition of Gpx, zq in the first sum and interchanging the summations, we get

S “
ÿ

NBďx
B|PKpzq

hpBq
ÿ

năNpďminp x
NB

,zq

ρppq

Np
logNp `

ÿ

x
z2

ăNBďx,

B|PKpzq

hpBq
ÿ

?
x
NB

ăNpďminp x
NB

,zq,

pp,BHq“OK

ρppqhppq logNp

Np
.

Applying Lemma 14, we get
ÿ

?
x
NB

ăNpďminp x
NB

,zq

pp,BHq“OK

ρppqhppq logNp

Np
ď n

ÿ

?
x
NB

ăNpďminp x
NB

,zq

p∤BH

hppq ď n2pπKp2nq ` 9q.

Combining the above we get

S “
ÿ

NBďx
B|PKpzq

hpBq
ÿ

năNpďminp x
NB

,zq

ρppq

Np
logNp ` O˚pn2pπKp2nq ` 9q Gpx, zqq.

For the first term, we get
ÿ

NBďx
B|PKpzq

hpBq
ÿ

năNpďminp x
NB

,zq

ρppq

Np
logNp “

ÿ

NBď x
z

B|PKpzq

hpBq
ÿ

năNpďz

ρppq

Np
logNp `

ÿ

x
z ăNBďx

B|PKpzq

hpBq
ÿ

năNpď x
NB

ρppq

Np
logNp.

We now apply Lemma 11 to deduce5

ÿ

NBďx
B|PKpzq

hpBq
ÿ

năNpďminp x
NB

,zq

ρppq

Np
logNp “ n

ÿ

NBď x
z ,

B|PKpzq

hpBq log z ` n
ÿ

x
z ăNBďx,

B|PKpzq

hpBq log
x

NB

` O˚

˜

n

˜

ωKpEq ` ωKpHq ` 3 `
e75|dK|1{3plog |dK|q2

αK

¸

Gpx, zq

¸

.

Combining the above, we get1

S “ n
ÿ

NBďx
B|PKpzq

hpBq log
x

NB
´ n

ÿ

NBď x
z ,

B|PKpzq

hpBq log
x{z

NB

` O˚

˜

n

˜

ωKpEq ` ωKpHq ` 3 ` npπKp2nq ` 9q `
e75|dK|1{3plog |dK|q2

αK

¸

Gpx, zq

¸

“ nT px, zq ´ nT px{z, zq ` O˚

˜

n

˜

ωKpEq ` ωKpHq ` 10n2 `
e75|dK|1{3plog |dK|q2

αK

¸

Gpx, zq

¸

.

□2

Note that Gpz, zq “ Gpzq and T pz, zq “ T pzq.3
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Corollary 16. For any real number y ě 1, we have

Gpyq log y “ pn` 1qT pyq `Gpyqrpyq log y,

where

|rpyq| ď

˜

ωKpEq ` ωKpHq ` 10n2 `
e75|dK|1{3plog |dK|q2

αK

¸

n

log y
.

Proof. Using Lemma 15 and adding T px, zq to both sides, we get4

Gpx, yq log x “ pn` 1qT px, yq ´ nT

ˆ

x

y
, y

˙

` O˚

˜

n

˜

ωKpEq ` ωKpHq ` 10n2 `
e75|dK|1{3plog |dK|q2

αK

¸

Gpx, yq

¸

.

Putting x “ y, we get the corollary. □5

From now onwards, for any real number y ą 3, we denote by1

(6)

Upyq “ log

ˆ

n` 1

logn`1 y
T pyq

˙

and L “ n

˜

ωKpEq ` ωKpHq ` 10n2 `
e75|dK|1{3plog |dK|q2

αK

¸

.

Lemma 17. For a real number z with log z ě 3pn` 1qL, we have

Gpzq “ cK,F logn z

ˆ

1 ` O˚

ˆ

9pn` 1qL

log z

˙˙

for some positive constant cK,F depending on K and F .2

Proof. We first observe that for log z ě 3pn` 1qL and any real number y ě z, we have

|U 1pyq| “

ˇ

ˇ

ˇ

ˇ

´
n` 1

y log y
`
T 1pyq

T pyq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´
n` 1

y log y
`

Gpyq

yT pyq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

rpyq

1 ´ rpyq

n` 1

y log y

ˇ

ˇ

ˇ

ˇ

ď
2pn` 1qL

y log2 y
.

This implies that the integral of U 1pyq from z to 8 is convergent. Further
ˇ

ˇ

ˇ

ˇ

´

ż 8

z
U 1pyqdy

ˇ

ˇ

ˇ

ˇ

ď
2pn` 1qL

log z
ă 1.

Recall that
n` 1

logn`1 z
T pzq “ exppUpzqq “ cK,F exp

ˆ

´

ż 8

z
U 1pyqdy

˙

for some constant cK,F . We now observe that

exp

ˆ

´

ż 8

z
U 1pyqdy

˙

“ 1 ´

ż 8

z
U 1pyqdy `

1

2!

ˆ
ż 8

z
U 1pyqdy

˙2

´ ¨ ¨ ¨
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and therefore3

exp

ˆ

´

ż 8

z
U 1pyqdy

˙

“ 1 ` O˚

˜

2pn` 1qL

log z
`

ˆ

2pn` 1qL

log z

˙2

` ¨ ¨ ¨

¸

“ 1 ` O˚

ˆ

2pn` 1qL

log z ´ 2pn` 1qL

˙

“ 1 ` O˚

ˆ

6pn` 1qL

log z

˙

.

Further we have

1

1 ´ rpzq
“ 1 `

rpzq

1 ´ rpzq
“ 1 ` O˚

ˆ

L

log z ´ L

˙

“ 1 ` O˚

ˆ

2L

log z

˙

since log z ě 3L. Applying Corollary 16 and combining the above, we get4

Gpzq “
n` 1

p1 ´ rpzqq log z
T pzq “ cK,F logn z

ˆ

1 ` O˚

ˆ

2L

log z

˙˙ˆ

1 ` O˚

ˆ

6pn` 1qL

log z

˙˙

“ cK,F logn z

ˆ

1 ` O˚

ˆ

9pn` 1qL

log z

˙˙

.

□1

Remark 3.1. If one wants a lower bound for Gpzq in the case n “ 1, one can use a simpler method that2

avoids relying on the sum ρppqplogNpq{Np as in Theorem 30 of [4].3

We conclude this section by computing the constant cK,F .4

Lemma 18. We have

cK,F “
αn
K

n!

ź

Npďn

ˆ

1 ´
1

Np

˙n
ź

p∤H
p1 ` hppqq

ˆ

1 ´
1

Np

˙n

.

Proof. For a real parameter s ą 0, consider the series

M “
ÿ

BĎOK
B‰p0q

pB,Hq“OK

hpBq

NBs
.

In the region ℜs ą 0, we have M “
ś

p∤H

´

1 `
hppq

Nps

¯

. Applying partial summation formula, we
have

M “ lim
xÑ8

¨

˝

ř

NBďx
pB,Hq“OK

hpBq

xs
` s

ż x

1

ř

NBďt
pB,Hq“OK

hpBq

ts`1
dt

˛

‚ “ lim
xÑ8

ˆ

Gpxq

xs
` s

ż x

1

Gptq

ts`1
dt

˙

.

By Lemma 17, we have that Gpxq ! logn`1 x and hence M “ s
ş8

1
Gptq
ts`1dt. We now split the

integral into two parts. Let z “ 3pn` 1qL, where L is as in (6). Then we have

M “ s

ż z

1

Gptq

ts`1
dt ` s

ż 8

z

Gptq

ts`1
dt.
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To estimate the first integral, we observe that for real s ą 0, we have

s

ż z

1

Gptq

ts`1
dt ď s

ż z

1

Gptq

t
dt “ sT pzq.

Recall that

T pzq “
ÿ

NBďz,
B|PKpzq

hpBq log
z

NB
ď log z

ÿ

NBďz
B|PKpzq

1

f1pBq
“ Opz log zq.

For the second integral, applying Lemma 17, we have1

s

ż 8

z

Gptq

ts`1
dt “ s

ż 8

z

cK,F logn t ` O
`

logn´1 t
˘

ts`1
dt

“ s

ż 8

1

cK,F logn t ` O
`

logn´1 t
˘

ts`1
dt ` Ops logn`1 zq.

We now use the fact that for s ą 0,
ż 8

1

logn t

ts`1
dt “

Γpn` 1q

sn`1
.

Therefore

M “
ź

p∤H

ˆ

1 `
hppq

Nps

˙

“ cK,F
Γpn` 1q

sn
` O

ˆ

Γpnq

sn´1

˙

` Ops logn`1 z ` sz log zq.

It immediately follows that

cK,F “
1

Γpn` 1q
lim
sÑ0`

sn
ź

p∤H

ˆ

1 `
hppq

Nps

˙

“
αn
K

n!

ź

p|H

ˆ

1 ´
1

Np

˙n

lim
sÑ0`

ź

p∤H

ˆ

1 `
hppq

Nps

˙ˆ

1 ´
1

Nps`1

˙n

.

This completes the proof of the lemma. □2

4. PROOF OF MAIN THEOREM3

Let z be a real number such that z ě 4. We use Npαq to denote the absolute norm of the
principal ideal pαq and Q to denote the set of all prime elements of OK. Recall that

fipxq “ aix` bi for 1 ď i ď n and F pxq “

n
ź

i“1

fipxq.

We want to estimate4

D “
ÿ

Npαqďu
fipαqPQ for all i

1 ď
ÿ

Npαqďz
fipαqPQ for all i

1 `

n
ÿ

j“1

ÿ

Npfjpαqqďz,

fipαqPQ for all i

1 `
ÿ

zăNpαqďu
pF pαq,PKpzqq“1

1

ď
ÿ

Npαqďz
fipαqPQ for all i

1 ` 2|µK|nz `
ÿ

zăNpαqďu,
pF pαq,PKpzqq“1

1,
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where |µK| is the number of roots of unity in OK. To estimate the first sum, we observe that for
u, v P OKzt0u, the norm of u, v are positive and

NK{Qpu` vq “ NK{Qpuq ` TrK{Qpuv̄q `NK{Qpvq,

v̄ denotes the complex conjugate of v. If OK “ Zr
?

´ds and uv̄ “ a` b
?

´d, then

TrK{Qpuv̄q “ 2a ď 2pa2 ` b2dq ď 2NK{Qpuv̄q.

Similarly if OK “ Zr
1`

?
´d

2 s and uv̄ “ a` b
2 `

b
?

´d
2 , we have

TrK{Qpuv̄q “ 2pa`
b

2
q ď 2ppa`

b

2
q2 `

b2d

4
q ď 2NK{Qpuv̄q.

Indeed, it is clearly true when a` b
2 ď 0 or a` b

2 ě 1. Now if 0 ă a` b
2 ă 1, then a` b

2 “ 1
2 and

b ‰ 0 and therefore 1 ď 2p14 ` b2d
4 q. Thus in both cases NK{Qpu` vq ď 4NK{Qpuvq. Therefore the

first sum under consideration gives
ÿ

Npαqďz,
fipαqPQ for all i

1 ď
ÿ

Npfi0
pαqqď4Npai0

bi0
qz,

fipαqPQ for all i

1 ď 8|µK|Npai0bi0qnz,

where Npai0bi0q “ mintNpaibiq : 1 ď i ď nu. Therefore

D ď 10|µK|Npai0bi0qnz `
ÿ

zăNpαqďu,
pF pαq,PKpzqq“1

1.

Let us consider the sum

ÿ

Npαqďu,
pF pαq,PKpzqq“1

1 “
ÿ

Npαqďu

¨

˝

ÿ

b|pF pαq,PKpzqq

µpbq

˛

‚ ď
ÿ

Npαqďu

¨

˝

ÿ

b|pF pαq,PKpzqq

λb

˛

‚

2

.

Rearranging the sums, we get

ÿ

Npαqďu

¨

˝

ÿ

b|pF pαq,PKpzqq

λb

˛

‚

2

“
ÿ

b1,b2|PKpzq,
Nbiďz

λb1λb2
ÿ

Npαqďu,
rb1,b2s|F pαq

1.

Let b “ rb1, b2s. To estimate the inner sum, we need to count α P OK such that α lies in one1

of the ρpbq classes in OK{b. If b | PKpzq and b0 is the largest divisor of b which is co-prime to2

E “
śn

i“1 ai
ś

1ďiăjďnpaibj ´ ajbiq, we can write ρpbq “ nωpb0qρp b
b0

q. Applying Theorem 3 for3

a “ OK, q “ b, we get for z ď
?
u1

ÿ

b1,b2|PKpzq

Nbiďz

λb1λb2
ÿ

Npαqďu,
rb1,b2s|F pαq

1(7)

“
ÿ

b1,b2|PKpzq

Nbiďz

λb1λb2

ˆ

cKρprb1, b2squ

Nrb1, b2s
` O˚

ˆ

1014ρprb1, b2sq

c

u

Nrb1, b2s

˙˙

,
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where cK “ 2π?
|dK|

. Note that the main term is
ř

b1,b2|PKpzq

λb1
λb2

fprb1,b2sq
, where f is as defined in (4).

Hence

ÿ

b1,b2|PKpzq

λb1λb2fppb1, b2qq

fpb1qfpb2q
“

ÿ

b1,b2|PKpzq

λb1λb2
fpb1qfpb2q

ÿ

a|pb1,b2q

f1paq “
ÿ

a|PKpzq

f1paq

¨

˚

˝

ÿ

a|c,
c|PKpzq

λc
fpcq

˛

‹

‚

2

.

Further, we observe that
ÿ

c|PKpzq

a|c

λc
fpcq

“ Gpzq´1
ÿ

c|PKpzq

a|c

µpcq

f1pcq

ÿ

Npgqď z
Npcq

pg,cHq“OK

µ2pgq

f1pgq
.

Writing c “ ha with ph, aq “ OK, we get2

µpaq

f1paq
Gpzq´1

ÿ

Nphqď z
Npaq

,

h|PKpzq,
ph,aq“OK

µphq

f1phq

ÿ

Npgqď z
Nphaq

pg,haHq“OK

µ2pgq

f1pgq
“

µpaq

f1paq
Gpzq´1

ÿ

Nphqď z
Npaq

,

h|PKpzq,
ph,aq“OK

ÿ

Npgqď z
Nphaq

pg,haHq“OK

µphq
µ2pghq

f1pghq
.

Setting a1 “ gh gives

ÿ

c|PKpzq

a|c

λc
fpcq

“
µpaq

f1paq
Gpzq´1

ÿ

Npa1qď z
Npaq

pa1,aHq“OK

µ2pa1q

f1pa1q

ÿ

h|a1

µphq “ Gpzq´1 µpaq

f1paq
.

Therefore the main term in (7) is cKuGpzq´1. Applying Lemma 17 and Lemma 18, we have for
log z ě 18pn` 1qL

Gpzq “
αn
K

n!

ź

p|H

ˆ

1 ´
1

Np

˙n
ź

p∤H
p1 ` hppqq

ˆ

1 ´
1

Np

˙n

logn z

ˆ

1 ` O˚

ˆ

9pn` 1qL

log z

˙˙

.

To deal with the error term, we use Lemma 12. Combining everything, we get for z ď
?
u3

D ď cKuGpzq´1 ` 10|µK|Npai0bi0qnz ` 1014p3nq4πKp2nqζK

ˆ

3

2

˙8n

z
?
u.

We now simplify the above expression to get4

D ď
2π

a

|dK|
uGpzq´1 ` 361nn16nNpai0bi0qz

?
u.

Therefore, if we choose

z “
π

?
uGpuq´1

2
a

|dK|361nn16nNpai0bi0q
ď

π
?
uGpzq´1

2
a

|dK|361nn16nNpai0bi0q
.

For log z ě 18pn` 1qL, we have5

D ď
5

4
¨

2π
a

|dK|
Gpzq´1u.
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We now compute the lower bound for u. Note that

p4nqn
?
u

logn u
ě u

1
4 .

Therefore for

u
1
4 ě

p4nqn
a

|dK|362nn16nNpai0bi0qαn
K

ś

p|H

´

1 ´ 1
Np

¯n
ś

p∤Hp1 ` hppqq

´

1 ´ 1
Np

¯n

n! π expp´18pn` 1qLq
,

we have6

D ď

5

ˆ

ś

p|H

´

1 ´ 1
Np

¯´n
ś

p∤Hp1 ` hppqq´1
´

1 ´ 1
Np

¯´n
˙

n!|µK|u

2αn´1
K hK logn π

?
uGpuq´1

2
?

|dK|361nn16nNpai0bi0 q

.

We now consider the product

ź

p∤H
p1`hppqq

ˆ

1 ´
1

Np

˙n

“
ź

p∤H

ˆ

1 `
ρppq

Np ´ ρppq

˙ˆ

1 ´
1

Np

˙n

ď
ź

p∤H

ˆˆ

1 `
1

Np ´ ρppq

˙ˆ

1 ´
1

Np

˙˙n

.

Further we have
ˆ

1 `
1

Np ´ ρppq

˙ˆ

1 ´
1

Np

˙

“

ˆ

1 `
ρppq ´ 1

NppNp ´ ρppqq

˙

ď

ˆ

1 `
1

NppNp ´ ρppqq

˙n´1

.

This gives
ź

p∤H
p1 ` hppqq

ˆ

1 ´
1

Np

˙n

ď
ź

p∤H

ˆ

1 `
1

NppNp ´ ρppqq

˙npn´1q

.

Finally

ź

p∤H

ˆ

1 `
1

NppNp ´ ρppqq

˙npn´1q

ď
ź

Npă2n
p∤H

ˆ

1 `
1

NppNp ´ ρppqq

˙npn´1q
ź

p

ˆ

1 `
1

Np2

˙2npn´1q

.

Therefore the constant
ź

p∤H
p1 ` hppqq

ˆ

1 ´
1

Np

˙n

ď 2npn´1qπKp2nqζKp2q2npn´1q ď 26n
3
.

Thus for

u
1
4 ě expp18pn` 1qLq

˜

a

|dK|323n
3
n17nNpai0bi0qαn

K

n!π

¸

,

we have7

D ď

5

ˆ

ś

p|H

´

1 ´ 1
Np

¯´n
ś

p∤Hp1 ` hppqq´1
´

1 ´ 1
Np

¯´n
˙

n!|µK|u

2αn´1
K hK logn n!π

?
u?

|dK|322n3n16nNpai0bi0 qαn
K logn u

.
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Further since u
1
4n ą log u

1
4n , we get for

u
1
4 ě expp18pn` 1qLq

˜

a

|dK|323n
3
n17nNpai0bi0qαn

K

n!π

¸

,

we have8

D ď

5

ˆ

ś

p|H

´

1 ´ 1
Np

¯´n
ś

p∤Hp1 ` hppqq´1
´

1 ´ 1
Np

¯´n
˙

n!|µK|u

2αn´1
K hK logn n!π u

1
4?

|dK|323n3n17nNpai0bi0 qαn
K

.

Note that by relabelling ai’s and bi’s for 1 ď i ď n, we can choose i0 to be equal to 1.9
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