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AN APPLICATION OF COUNTING IDEALS IN RAY CLASSES

SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

ABSTRACT. In this article, we prove a fully explicit generalized Brun-Titchmarsh theorem for an
imaginary quadratic field K. More precisely, for any finite family of linearly independent linear
forms with coefficients in Ok, we count the number of integers at which all these linear forms

take prime values in Ok.
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1. INTRODUCTION AND STATEMENT OF THE THEOREM

Throughout this article, K will denote an imaginary quadratic field with discriminant dx,
hk the class number of Ok and |uk| the number of roots of unity in Og. We will denote by (k
the Dedekind zeta function of K and its residue at s = 1 by ak. Further we use Pk to denote
the set of prime ideals of Ok and Q to denote the set of all prime elements of Ox. We will
denote by wk (b) the number of distinct prime ideals of Og which appear in the factorization
of the ideal b in Ok and by 7k (z) the number of prime ideals of Ok with norm at most z.
The aim of this article is to prove a fully explicit generalisation of the Brun-Titchmarsh theorem
for several linear forms taking values in Q. This is a natural generalisation of the problem of
finding an upper bound for the number of prime values that can be taken by a set of n linear
forms simultaneously. This question has been addressed in considerable detail in literature.
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The study of such generalisations finds its origin in the twin prime and prime k-tuple con-
jectures. However the problem has been placed in the more general context of linear forms by
Dickson’s conjecture [5] which states the following.

Conjecture 1 (Dickson’s conjecture [5]). Given a set of n distinct irreducible linear polynomials
Fi,...,F, € Z|x] with positive leading coefficient, suppose that the product | [, Fi(x) has no fixed
prime divisor. Then the polynomials F;(x) simultaneously take prime values infinitely often.

A quantitative version of Dickson’s conjecture was given by Batemann and Horn [1, 2] in
1962. The precise form of the Bateman-Horn conjecture is as follows.

Conjecture 2 (Bateman-Horn conjecture [1, 2]). Given a set of n distinct irreducible linear polyno-
mials Fi, ... F, € Z[z] with positive leading coefficient, and suppose that the product [ |}'_, F;(z) has
no fixed prime divisor. Then

> 1—H{(1_;>"(1_P§.f’>>}.LxIOZit(1+o<1)>

osw o p
F; (k) is prime Vi

as x — 0. Here p(p) is the number of solutions of | [\"_, F;(x) = 0 mod p.

The only case in which these conjectures have been resolved is in the case of a single linear
polynomial which is nothing but the prime number theorem for primes in arithmetic progres-
sions. For every other case finding even a lower bound in place of the asymptotic is notoriously
difficult. However upper bounds close to the one suggested by the asymptotic are known us-
ing Selberg sieve techniques. For instance, one may find the following theorem in [9] (pages
157-159).

Theorem 1. Given distinct irreducible linear polynomials Fi, ..., F, € Z[x] with positive leading
coefficients, let F(x) = [|i, Fi(x). Further let p(p) be the number of solutions modulo p of F(x). If

p(p) < p for all primes p,

—n -
5 e (1-2) " (- 22) 2 (1o (i),
1<k<z D p p log™ log =

F; (k) is prime Vi

In this article, we show that an analogous bound can be obtained if we consider prime
elements in an imaginary quadratic field instead of the rationals. Further our bounds are fully
explicit. We present an application of such a bound in [10]. On the other hand this paper itself
demonstrates an application of the main theorems of [8].

Theorem 2. Let u be a positive real number, n > 1 be an integer and a; € Og\{0}'s for 1 < i < n be

distinct. Assume that (a;Ok, bjOk) = Ok for 1 <i<mn, (¢;0k : 1 <i<n)= Ok and

E = ﬁai H (aibj —ajb;) # 0.
i=1

1<i<j<n
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Further assume that for any prime ideal p of Ok, p(p) is the number of solutions of

H(ai:z: +b;) =0 mod p
i=1

and Q denotes the set of prime elements of Ok. Then for u > [U(K, a1b;)]?*, we have

|
Z L < 5nn—|'L1LK| 'S - 1 )
N(a)<u 20‘1{ hk (logCuZ)n
Vi,b;+a;aeQ
where
1 L !
UK, aby) = exp(18(n +1) )7 O — i nlm 7
C 323n nlmm(albl)a?{\/@
) 6| dve 11/3 (log |die )2
L = 4dnwk((E)) + 4nwk( H p) + 20m3 & ne |dk|"*(log |dk|) 7
aK
Np<n
and

5= (ml;lnm?Q)mQ (“%ﬁ?) (1_‘;:0)”‘

The paper is organized as follows. In section 2, we will state some notations and prelimi-
naries required for the proof of our main theorem. In the same section, we will also recall the
results used from [8]. In section 3, we will prove some auxiliary lemmas and finally we will use
them in section 4 to prove our theorem.

2. NOTATION AND PRELIMINARIES

Let K be an imaginary quadratic field and Ok be its ring of integers. For an ideal q € Ok,
let Hy(K) denote the ray class group modulo q and hk 4 denote its cardinality. When q = Ok,
the ray class group modulo Ok is Clk. In this case, we denote hk o, by hk. Throughout the
article, 91 will denote the (absolute) norm, p will denote a prime ideal in Ok and p will denote a
rational prime number. Further we use ¢(q) to denote the Euler-phi function as defined below

1
1 =N 1———).
(1) w(a) = N(a) l;[ ( m(p)>
q
For any embedding o of K, the Minkowski embedding v of K to R? maps z to R(c(z)), S(c(z))).

Let us begin with a counting theorem proved in [8].

Theorem 3. (Gun, Ramaré and Sivaraman) Let a, q be co-prime ideals of Ok, € be the ideal class of
aq in the class group of Ok and A(aq) be the lattice 1 (aq) in R?, where 1 is as defined above. Also let

S (a,0,8°) = {aea : [¥(a)]? <, o= mod q}
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for some fix B € Ok. Then for any real number t > 1, we have

) 195 (a,9,t%)| = (2”))9 + O* (Wt + 1),

v/ |dk | 9(aq [N (aq)|2
where
1
NEY) = maxyee— T
9(b)|2

One can ignore 1 in the error term when q = Ok.

For an arithmetic function f and a positive arithmetic function g, f(z) = O*(g(z)) implies
that |£(2)] < g(2).

The Dedekind zeta-function. For Rs = o > 1, the Dedekind zeta-function is defined by

&)= Y g

)
acOk (a) °

where a ranges over the integral ideals of Ok. It has only a simple pole at s = 1 of residue ax,
say. When K is an imaginary quadratic field, we know from the analytic class number formula
that

3) 2mhk

aK = ————,
Ik /| dxk |

where hk,dk and |uk| are as before. We now quote a result from [4] which will be used to
prove our theorem.

Lemma 4. (Deshouillers, Gun, Ramaré and Sivaraman) If a is the residue at s = 1 of the Dedekind
zeta function of K, then we have

ax < 6(27%/5)%|dg |4

36
— <
100+/]dk |

The next lemma is a result from [3] and is used to estimate the error term in Theorem 3.

Lemma 5. (Debaene) Let by, by, - - - be integral ideals of Ok, ordered such that M(by) < M(bg) - -.
Then for any real number y > 2

N

Z‘ﬁ(bi)*% < 122 (logy)>.

Finally we recall two estimates which will be used in due course of our proof.
Lemma 6. (Debaene [3]) For any real number y > 16, we have

1
Z — < 0.666 + loglogy.
p<y?
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Lemma 7. (Rosser and Schoenfeld [12]) For any real number y > 1, we have

1
Z — = loglogy.

P<Y

2.1. Counting the total number of ideals. Applying Lemma 5, we derive the following corol-

lary from Theorem 3.

Corollary 8. Let K be an imaginary quadratic field. For any real number x > 1, we have

Proof. For any class [€] in the class group Clk of Ok, choose an integral ideal b € [¢~!]. From

l\)\»—l
-

Z 1 = akx + O*< 015(hK log(3hk))2x

acOxk,
Na<z

Theorem 3, we have

Yi-Y ¥ o=y

acOxk, CeClk ae[€]nOKk, CeClk |M
Na<x Na<z

||{ae be : |p(a)]* < 20Mbe}|

2rhkx 13.66 -1
= ———— + 0" 107"z NE ) |.
/1| ( @e%{

To majorize Y gecy, M€ '), we apply Lemma 5 with y = 3hk. This completes the proof of
Corollary 8. O

3. SOME INTERMEDIATE LEMMAS

3.1. Selberg sieve. Let n be an integer greater than or equal to 2, a;z + b; for 1 < i < nben
distinct linear forms with a;,b; € Ok \{0}, (¢;0k, b;0k) = Ok and (a;0k : 1 < i < n) = Ok.
We further assume that

E = Haz [] (abj—ab) and H=]]»

I<i<yj<n Np<n

For an integral ideal b, let p(b) denote the number of solutions of
F(x) = H(@ﬂ +b;) = 0 mod b.
i=1
Applying Chinese remainder theorem, it follows that p(b) is a multiplicative function. Further,
we observe that for any prime p, p(p) < 9p when 9tp > n. Let us define the multiplicative

functions

@ fo =T ad Ae) = X s (1).
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We may assume that p(p) < 9tp when 9p < z since otherwise no prime of norm greater than
z is to be counted in our sum. Hence f; > 0 on the set of non zero square free integral ideals
co-prime to H. Also f(Ok) = 1. Further, for an ideal ¢ of Ok co-prime to H, we define

F(6)Se(5)
A(OCE)

2
Pz = [[ »Szx)= Y qu((Z)) G(2) = Sox (2) and A = u(e)
e T,

Proposition 9. For any ideal b | Pk (z), we have |Xp| < 1.

Proof. For an integral ideal b dividing Pk (=), we have

_ ) 1 () 1 (o) K (e)
So() = o 1) 2 fi(a) - % [0 m(agz fi(a)

MO <ty Q)
(a,bH)=Ok (a,bH)=0x
GQOK GEOK

z pe) _ f(b) 2
So | =~ = Se .
(b)) o file) o) T AN(b)
The last step follows from the fact that b is square-free and co-prime to H. To see this, note that

p(a) 1\ 2apf1(@)  f(b)
fi(a) H (1+ f1(P)> — fi(e)  fi(b)

This completes the proof of the lemma. O

alb plb

We now recall a special case of a result of Garcia and Lee [7] .

Theorem 10. Let K be an imaginary quadratic field and x > 2. We have

1 75 1/3(1 2
S ey o <3+e dxc |/ (log | dxc ) )
Yipex INp aK

Using the above theorem, we can now prove the following asymptotic.

Lemma 11. Let x > 2 be a real number. The sum

75| 7. |1/3 2
Z p(p)glgjgmp = nlogz + O* <n <wK(E) +wk(H) +3+ ¢”ldx] a(IOg‘dKD >> .
K

n<MNp<z

Proof. It follows from the definition of p, H and E that

5 W - W + 0*(n(wk(E) + wk (H))),
Np<a

n<Np<z

where wgk (E) denotes the number of distinct prime ideals of K dividing the ideal (E) in K.
Thus we have the lemma.
O
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2 3.1.1. An estimate to control the error term.

Lemma 12. We have

8n
Z ‘)\bl)\b2|m < (3n)47TK(2n)CK (3> =
b1.b2 [P (2), 2([by, b2]) 2

Nb; <z

Proof. We consider the sum

DL W A(LIELE] B S C I S AVBT IO /I
1/\b2 .
b1,02|PK (), m([blv [12]) 2|PK (2), p(a) b; PR (2), m(blbz)

Nb; <z No<z 0=(b1,bg)
Nb; <z

From the expression of A\, and with y = z/910, we get

5 PbO gy e VIR )

po(c
Ne<y, Vmc Ne<y, p(a)fl(ca) Nm<y/N(c), fl(m)
(¢,0H)=1 (c,0H)=0xk (m,c0H)=0g
< Mo 2 u2(m) Z M2(C)m
G(2)p(0)1(0) &2, film) (= file)
(m,H)=0g (¢, H)=0r

VY No (% (m) VY N0 p(p)
ST ORE 2 Amvame? = 2on) mp>n<1 MNETOr —p<p>>>'

(m,H)=0g
We thus get
_Allbr,baD) pld) (V=30 plp) ’
bl,bQZP:K(z), Por sl MN([b1, ba]) s aéz) Vo (ﬂ(a)ﬁ(a) ml;ln<l " VO (Np — p(p)))>
p(p) ? p(p)vIp
) zmlna:[n<1 V(0 - p(lﬂ))) <1 T - p(P))2>
Note that
o) ) 2\ e (3)
i <1 MG —p<p>>> < () H (1 N mpz) < (2n)H K (2) |
Similarly
9?1p_>[n (1 i (mp - p(p))Q) < n<¥]1;[g2n(1 - \/%) mgn (1 + mpg) < (3 ) CK <2) .

3 This completes the proof of the lemma. O
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3.1.2. Estimating G(z). We redo the proof of Fainleib-Levin [6] as described in Halberstam-
Richert [9] in the number field setting with the additional condition J|Pk(z). It can also be
done using the methods of Theorem 13.3 of [11]. Let

2 2
p=(0) 1)
G(z,2) = and Gp(z,z) = Z .
o (&P)(:\(%K

Lemma 13. We have

4t @ p(p) @ p(p) x
1- 82 ) =(1-E¥ ) -E8q (= 1),
< ‘ﬁp>G‘° <‘ﬁp’z) < mp ) \ow?) T @\ ?
Proof. For an integral ideal ¢ co-prime to H, let h(0) = ’Jﬁf—((g)). The function h is multiplicative.
From the definition of G(z, z), we have

PK (=) Pk (2) 0Pk (2)
No<x No<z magmi
(@) =0k (@.9)=0K

Multiplying both sides with (1 — %';)), we get

(1 - fg?) G (z,2) = (1 - ’;ﬁfg) Gy (z,2) + (1 - f;fg) h(p)Gy (;;;z> .

4 However we note that

© (1 - ‘;?2) o) = (1 - @) ok (1 - ’;ﬁ?) =1 767

This now gives us

(1 _ ‘;;f:) Gla,2) - (1 _ ’;&?) Gy (. 2) + f(lmcp <gfpz> .

Replacing by 515 in G(z, 2), we get

(=)o (a) = () & (3 ) 7 ()

1 Thus we have the lemma. ]

Lemma 14. For an integral ideal 0 and real number x > N0 we have

D1 h(p) < n(rk(2n) +9),
5t <MP<g{5-
pto

2 where k() denotes the number of prime ideals of Ok with norm at most x.
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Proof. We have
n n 2n
I e ISR R T

T _x_ T x_ Np<2n T_ x_
V 91g <M< mo <"P<mz- ptH me <MP<q15
pioH ptoH pto

Note that

VERE S RN
The first sum is estimated using a result of Debaene [3] (see Lemma 6) and the second using a
result of Rosser and Schoenfeld [12] (see Lemma 7). This gives us for z > 16910,

2n 2n z x

— = — < 2n | 0.666 + loglog — — log1 — | <2n(0.666 + log2) < 2.8n.

; Zx » n< + log 08 ;15— log Og”‘ﬁ@) n( +log2) n
P<w; P/ %3

If x < 16910

Let

T(x,z) = Jj G(t, z) dt

It follows from the definition of G(t, z) that

xZJZh th Ehlog

MNo<t, No<x, No<x,
Pk (%) APK(2) Pk (2)
Lemma 15. Let z > 1 be a real number. The sum
Z h(0)logMo = nT(x,z)—nT (—,z)
z

No<x
9Pk (=)

75 1/3 2
+ o*<<wK<E>+wK<H>+mn2+e x| <log|dK|>>

K

nG(x,z)) .
Proof. We have

N a@YlogMp= > hp)logMp Y hm)= > h(p)Gy <9fp,z>1ogmp.

No<z, plo n<Np<z ‘J”tmsg'tip n<Np<z
AP mIPg (=),

(m,p)=0Ox
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Applying Lemma 13 and using (5), we get

Z P

() log 9p <x2> N
n<MNp<z mp mp

n<MNp<z

3 p(p%};(p) ogMp > A(m).

Wip <Nm< 57 ‘)’Ip

m|Pg (2),
(m,p)=0Kk

Using the definition of G(z, z) in the first sum and interchanging the summations, we get

p
s= S0 Y Wegmr ¥ o0 Y
) n<Np<min( 5% ,2) ii;:(zs)z %;fgijmg(ﬁ
’ =YK

Applying Lemma 14, we get
Z p(p)h(p)log MNp <n 2

~

N
A /%<mp<min(%,z) p A/ %<mp$min(%,z)
(p,0H)=0K ptoH
Combining the above we get
S= > ho > P 1os sty + O (n?

DMp

No<x

o1Pr (2) n<MNp<min(;,2)

For the first term, we get

PG > i)j(gj)log‘)"(pz PG

No<z no< L
< <
APy (2) n<Np< rnln( Ny &

Z ﬂ

n<‘ﬂp<z

log INp +
%)
5 We now apply Lemma 11 to deduce

PIRIG) > ;;(;;J)loggtp—nZh

No<w n<‘ﬂp<min(%,z) No<Z,

Pk (=) O\PK(Z) Pk (2)

+ O* (n ((,UK(E) -I-WK(H) + 3+

1 Combining the above, we get

z/z

- m; h(o log —n Z h(9)log 1o
<z No< =,
9Pk (=) Pk (=)

<‘ﬁé’<:c
(7I7’K(Z)

Jogz + n 2 h(0)

Z <Mo<ua,

e™|dx|"/* (log |dk )

p(p)h(p) log MNp
Np '

12),

h(p) < n®(mk(2n) +9).

(mrk(2n) +9) G(z, 2)).

GED /;(;;)log‘)"(p.

n<‘np\m€

)1
o sna

e™|dx|'/* (log |dk )

aK

) G(x, z)) :

+ OF (n (wK(E) +wk(H)+3+n(rk(2n) +9) + ox

e™|dxc|'/* (log |dk )

) G(x, z))

= nT(z,z) —nT(x/z,2) + O* (n <wK(E) + wk (H) + 10n? +

3 Note that G(z,z) = G(z) and T'(z,2) = T(2).

aK

2) G(z, z)) .

O
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Corollary 16. For any real number y > 1, we have

G(y)logy = (n+ 1)T'(y) + G(y)r(y) logy,

where

75| Je, [1/3 2
|r(y)] < <OJK(E) + OJK(H) + 10”2 + € ’dK’ <log‘dKD> n )
aK logy
4 Proof. Using Lemma 15 and adding 7'(z, z) to both sides, we get
Gle.p)loge = (n+ 1)T(a9) =T (2.)

+ OF (” (WK(E) +wk (H) + 10n* + el log |dK|)2> G(m,y)> .

K

5 Putting = = y, we get the corollary. 0

1 From now onwards, for any real number y > 3, we denote by

(6)
Ul(y) = log <

n+1

logn+1 y

750 7. 1/3 9
T(y)> and L =n (wK(E)+WK(H)+1On2+ e’ |dk|"/*(log |dKk|) ) ‘
aK

Lemma 17. For a real number z with log z > 3(n + 1)L, we have

G(z) = ck plog" z (1 + O* <9(n+1)L>>
log 2z

2 for some positive constant ck r depending on K and F.

Proof. We first observe that for log z > 3(n + 1)L and any real number y > z, we have

‘ 2(n+1)L
< .
ylog”y

o) - |- 2 T

B ’_n+1+G(y)‘:‘ rly) n+1
ylogy ~ T(y)

ylogy — yT'(y) 1 —7r(y)ylogy

This implies that the integral of U’(y) from z to « is convergent. Further

®© 2(n+ 1)L
‘—J U’(y)dy‘ < (logz) < 1.

Recall that

1()7;:;112T(z) =exp(U(z)) = ck,Fexp <— LOO U’(y)dy)

[ U’(y)dy)2 .

for some constant ck . We now observe that

exp (— fo U’(y)dy> =1 - LOO U'ly)dy + 21'(
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2
|+ O 2(n+1)L+ 2(n+ 1)L L
log z log z

and therefore

exp (— LOO U ’(y)dy)

Further we have

71 = ﬂ — * # _ * 2L
1—r(z) L 1—r(z) L+0 <logz—L> =1+0 log z

since log z > 3L. Applying Corollary 16 and combining the above, we get
n+1 2L 6(n+1)L
= ———T(z) = log"z ( 1+ O* 14+ 0% [ ——=
G(z) (1 —=r(z))logz (2) = exrlog”z < 0 <logz>> < 0 < log z >>

1)L
ek rlog" z <1 + O* <9(n+)>) )

log z

O

Remark 3.1. If one wants a lower bound for G(z) in the case n = 1, one can use a simpler method that
avoids relying on the sum p(p)(log Np)/Np as in Theorem 30 of [4].

We conclude this section by computing the constant ck r.

Lemma 18. We have

e =6 ] <1_£p>n [T+ ki) (u{ép)n.

Np<n ptH

Proof. For a real parameter s > 0, consider the series

h(2)
M = .
“CZ(’)] mas
oSOk
0#(0)
(0,H)=0g

In the region Rs > 0, we have M = [, (1 + h(p)> . Applying partial summation formula, we

Nps
have
Z No<x h(@) xZ No<t h(@) G T
T (o o Zemsoe ) oy (@) S10)
M = leHOlO s + SJ; ts+1 dt | = Ilgl(}o( xs + SL s+l dt ).

By Lemma 17, we have that G(z) « log""' 2 and hence M = s Si’o %dt. We now split the
integral into two parts. Let z = 3(n + 1)L, where L is as in (6). Then we have

“G(t) CG(t)
M=s . t3+1dt + SL tsjdt
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To estimate the first integral, we observe that for real s > 0, we have

sf GOy < sr Git)dt _ ST(2).

1 ts+1 1
Recall that
z 1
T(z) = h(0)log — < logz —— = Of(zlogz).
(2) m;@ (0) log 5o g WZSZ G (zlog 2)
0Pk (=) 0Pk (=)

For the second integral, applying Lemma 17, we have

© Gt o log"t + O (log" 't
G()dt _ SJ CK,F 10g (og )

t5+1 t5+1 dt

z z

dt + O(slog"™!2).

foo ck,rlog"t + O (lognf1 t)
s

1 t5+1

We now use the fact that for s > 0,

“ log" r 1
J og't . _ (n+1)

1 ts+1 gn+l
Therefore
_ h(p)\ _ I'(n+1) I'(n) n+1
M = H <1+ ‘ﬁp5> = xp— 0) 1)t O(slog"™" z + szlog 2).

ptH

It immediately follows that

_ h(p)\ _ ak LN\ h(p) 1 \"
CK,F—F(n_‘_l)sl_l)IngSp+H<1+mps>—n!}_[ 1 o sli%’gl 1+mps 1 i1 ) -

This completes the proof of the lemma. O

4. PROOF OF MAIN THEOREM

Let z be a real number such that z > 4. We use 91(«) to denote the absolute norm of the
principal ideal () and Q to denote the set of all prime elements of Ok. Recall that

fi(x) =aw+b forl<i<n and F(z)=]]fi(2).
=1

We want to estimate

n
D= > 1< o+ >y 1+ D1
N(a)<u N(a)<z 7=1 ‘J’i(fj(a))SZ, z<N(a)<u
fi(a)eQforall 4 fi(a)eQforall i fi(a)eQ forall i (F(a),PK(2))=1
< Z 1 4+ 2Juk|nz + Z 1,
N(a)<z z<N(a)<u,

fi(@)eQ forall 4 (F(a),PK (2))=1



14 SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

where |pk | is the number of roots of unity in Ok. To estimate the first sum, we observe that for
u,v € Ok \{0}, the norm of u, v are positive and
Nk g(u +v) = NK/@(U) + Trg jo(uv) + Nk /g(v),
v denotes the complex conjugate of v. If Ok = Z[v/—d] and uv = a + by/—d, then
Trig(uv) = 2a < 2(a”® + b*d) < 2Nk g(u).
Similarly if Ok = Z[HT\/?d] and uv = a+ 3 + Lﬁ, we have

i b b, bd
Trijg(uv) = 2(a+ 5) <2((a+5)* + =

Indeed,itisclearlytruewhena+% <0Oora-+ % > 1. Nowif 0 < a+g < 1,thena+% = %and
b # 0 and therefore 1 < 2(§ + b?Td). Thus in both cases Nk /g(u +v) < 4Nk g(uv). Therefore the

first sum under consideration gives

2 1 < Z 1 < 8|px[aizbio)nz,
N(o)<z, N(fig (@))<4N(azybig)=,
fi(a)eQforall 4 fi(a)eQforall 4

where 9(a;,b;,) = min{M(a;b;) : 1 <i < n}. Therefore

D < 10|u|M(aibi,)nz + Z 1.
z<N(a)<u,
(F(a),P (z))=1

Let us consider the sum

>, 1= p(b)

e N(a)<u \bI(F(a) Pk () Na)<u \bI(F(a)Pk(2))

)
]
]
&

Rearranging the sums, we get

> DI d] = > ded, DL

N(a)< F(a), b1.bo| P (2), M(a)<u,
(a)<u \b|(F(a),Pk(2)) PR o1 b (o)

Let b = [by, by]. To estimate the inner sum, we need to count @ € Ok such that « lies in one
of the p(b) classes in Ok /b. If b | Pk(z) and by is the largest divisor of b which is co-prime to
E = [TiL; ai [ li<icjen(aibj — ajbi), we can write p(b) = nw("o)p(%). Applying Theorem 3 for
a=0k,q="b, wegetforz < u

7) Z Aby Aby Z 1

b1,b2|PK (2) N(a)<u,
MNb,; <z [61,b2]F ()
cxp([b1, b2))u ., < 14 u
= Aoy Ap <+O 107 p([b1, b2])p [ = | | >
blﬁb;mz) s N[by, by MN[by, ba]

Nb; <z
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where ck = \/ﬁ Note that the main term is Zbl bo | Pxc (2) %' where f is as defined in (4).
K b
Hence
2
Aby Av, f (b1, b2)) 3 /\bl)‘b2 2 Ac
> = f1 = f1 >
b1,b2[Pk (2) 7 (62)f(bz) b1,b2( Pk (2) i afPic(2 c|7§1|<c’(2> 7
Further, we observe that
Z Z p(c) v 1 (g)
P 5 f (1P (2 c) <ag fi(g)

Writing ¢ = ha with (b, a) = Ok, we get

pu(a) o 11(h) we) _ n@) ooy 1 (gh)
@G W;Z 2 Fw - m@C® WZ > )R

M(a)’ MO S ay <w(ay MO<wioay
bIPK (2), (9.baH)=Ox BIPK (=), (3.baH)=Ok
(9,0)=Og¢ (h,0)=Ok

Setting a; = gh gives

p(a) -1 ﬂQ(al) _ )1 p(a)
c.;z (a)G(Z) “<>§m<> fi(ar) %“(h) = G fi(a)
ale (al,nH):OaK

Therefore the main term in (7) is cxkuG(2)~!. Applying Lemma 17 and Lemma 18, we have for
logz > 18(n+ 1)L
o 1\" 1\" 9(n+1)L
G(z) = X <1 - ) H(l + h(p)) <1 - > log" z <1 + O* ()) .
!
n! ol MNp ot Np log z
To deal with the error term, we use Lemma 12. Combining everything, we get for z < 4/u

3 8n
D < cxuG(2)™t + 10|ux|M(ai,bi,)nz + 101 (3n)4m< @) ¢y (2) z\/u.

We now simplify the above expression to get
2m

< -
Vx|

uG(2)™t + 381mpl5m0(a; biy ) 20/ 1.

Therefore, if we choose

B m/uG(u) =t - T/uG(z) 71
20/1dk 36170170 (as by, ) 24/[dK |31l (as, by )

Forlog z > 18(n + 1)L, we have
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We now compute the lower bound for u. Note that

N

log"u =

(4n)"

Therefore for

1
ut =

(4n)" /1|32 "N asobig ok Ty (1= 555) Tlypar 0+ 50) (1 o

)

n! mexp(—18(n + 1)L)

we have

D <

m/uG(u)~!

-1 n
203 “hk lo
K KO8 e 351 n16m 0 s by )

We now consider the product

ptH ptH

Further we have

(s 00) () = (= st ) = (s s)

This gives

[To+non (1- ) < [1(1+ M)”

ptH

Finally

ptH

Therefore the constant

1\" .
H(l + h(p)) <1 _ m) < 2n(n—1)7rK(2n)CK(2)2n(n—1) < 26713'
ptH

Thus for

nlr

d 323n3 17nm ibi n
ul > exp(18(n + 1)L) <V| K37 i biy O |

we have

D <

_ | \/ﬂ
204 'hx log" o
K K108 A/ ldk \322"37116“91(%0 big)aj log™ u

5 (Tl (1= o) " T4+ 16 (1= 5) ) et

[Teenon (-5 ) = TTC ) () <IH(0 s

0 smmm) = I (v smmm) 1(1+ g

5 (Tl (1= o) T+ 16 (1= 5) ") et

9
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. 1 L
Further since ua» > loguin, we get for

V1K [3B7 n TN (a4, by )l

ui > exp(18(n + 1)L)

nlr
we have
5 (Tl (1= o) " Tl 4 ) (1= o) ™) sl
D < .
1 nlm ul
205 hxk log" a3 T arg brg )
Note that by relabelling a;’s and b;’s for 1 < ¢ < n, we can choose 7( to be equal to 1.

Acknowledgements. Research of this article was partially supported by Indo-French Program
in Mathematics (IFPM). All authors would like to thank IFPM for financial support. The first
author would also like to acknowledge SPARC project 445 and DAE number theory plan project

for partial financial support.

REFERENCES

[1] P. T. Bateman and A. R. Horn, A heuristic asymtotic formula concerning the distribution of prime numbers,
Math. Comp. 16 (1962), 363-367.
[2] P. T. Bateman and A. R. Horn, Primes represented by irreducible polynomials in one variable, Pro. Sympos.
Pure Math. 8 (1965), 119-135.
[3] K. Debaene, Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem,
Int. J. Number Theory, 15 (2019), no. 5, 883-905.
[4] J.- M. Deshouillers, S. Gun, O. Ramaré and ]. Sivaraman, Representing ideal classes of ray class groups by
product of prime ideals of small size, Submitted.
[5] L. E. Dickson, A new extension of Dirichlet’s theorem in prime numbers. Messenger of Math. 33 (1903/1904),
155-161.
[6] A.S. Fainleib and B. V. Levin, On a method of summation of multiplicative functions, Izv. Akad. Nauk SSSR
Ser. Mat., 31 (1967), 697-710.
[7] S. R. Garcia and E. S. Lee, Unconditional explicit Mertens’ theorems for number fields and Dedekind zeta
residue bounds. Ramanujan J., 57 (2022), 1169-1191.
[8] S. Gun, O. Ramaré and J. Sivaraman, Counting ideals in Ray classes, J. Number Theory, 243 (2023), 13-37.
[9] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, 4, Academic
Press, London-New York, 1974.
[10] N. Kandhil, R. Lunia and J. Sivaraman, On some generalisations of the Euler-Mascheroni constant, Submitted.
[11] O. Ramaré, Excursions in multiplicative number theory. Birkhduser/Springer, Basel, 2022.
[12] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6
(1962), 64-94.

(Sanoli Gun) INSTITUTE OF MATHEMATICAL SCIENCES, A CI OF HOMI BHABHA NATIONAL INSTITUTE, CIT
CAMPUS, TARAMANI, CHENNAI 600 113, INDIA.



151
152

153
154
155
156
157

18 SANOLI GUN, OLIVIER RAMARE AND JYOTHSNAA SIVARAMAN

(Olivier Ramaré) CNRS / INSTITUT DE MATHEMATIQUES DE MARSEILLE, AIX MARSEILLE UNIVERSITE, U.M.R.
7373, SITE SUD, CAMPUS DE LUMINY, CASE 907, 13288 MARSEILLE CEDEX 9, FRANCE.

(Jyothsnaa Sivaraman) CHENNAI MATHEMATICAL INSTITUTE, H1, SIPCOT IT PARK, SIRUSERI, KELAMBAKKAM,
603103, INDIA.

Email address: sanoli@imsc.res.in
Email address: olivier.ramare@univ—-amu. fr

Email address: jyothsnaas@cmi.ac.in



	1. Introduction and statement of the Theorem
	2. Notation and Preliminaries
	The Dedekind zeta-function
	2.1. Counting the total number of ideals

	3. Some intermediate lemmas
	3.1. Selberg sieve

	4. Proof of main theorem
	References

